Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 159765, 7 pages
http://dx.doi.org/10.1155/2014/159765
Research Article

New Biomarkers to Predict the Evolution of In Situ Breast Cancers

1Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, 47014 Meldola, Italy
2Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, 47014 Meldola, Italy
3Pathology Unit, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
4Breast Surgery Unit, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
5Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, 47014 Meldola, Italy
6Pathology Unit, Santa Maria delle Croci Hospital, 48010 Ravenna, Italy

Received 16 April 2014; Revised 21 July 2014; Accepted 23 July 2014; Published 26 August 2014

Academic Editor: Kapil Mehta

Copyright © 2014 S. Bravaccini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Bravaccini, A. M. Granato, L. Medri et al., “Biofunctional characteristics of in situ and invasive breast carcinoma,” Cellular Oncology, vol. 36, no. 4, pp. 303–310, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Cleator and A. Ashworth, “Molecular profiling of breast cancer: clinical implications,” British Journal of Cancer, vol. 90, no. 6, pp. 1120–1124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. K. A. Skinner and M. J. Silverstein, “The management of ductal carcinoma in situ of the breast,” Endocrine-Related Cancer, vol. 8, no. 1, pp. 33–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Holland, J. L. Peterse, R. R. Millis et al., “Ductal carcinoma in situ: a proposal for a new classification,” Seminars in Diagnostic Pathology, vol. 11, no. 3, pp. 167–180, 1994. View at Google Scholar · View at Scopus
  5. M. Krieg, R. Haas, H. Brauch, T. Acker, I. Flamme, and K. H. Plate, “Up-regulation of hypoxia-inducible factors HIF-1α and HIF-2α under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function,” Oncogene, vol. 19, no. 48, pp. 5435–5443, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Arienti, A. Tesei, S. Carloni et al., “SLUG silencing increases radiosensitivity of melanoma cells in vitro,” Cellular Oncology, vol. 36, no. 2, pp. 131–139, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Agnihotri, S. Kumar, and K. Mehta, “Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer,” Breast Cancer Research, vol. 25, no. 15, pp. 202–210, 2013. View at Google Scholar
  8. Z. Hu, G. Huang, A. Sadanandam et al., “The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer,” Breast Cancer Research, vol. 12, no. 2, article R18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Korkeila, P. M. Jaakkola, K. Syrjänen, J. Sundström, and S. Pyrhönen, “Preoperative radiotherapy downregulates the nuclear expression of hypoxia-inducible factor-1α in rectal cancer,” Scandinavian Journal of Gastroenterology, vol. 45, no. 3, pp. 340–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Bijker, J. L. Peterse, L. Duchateau et al., “Risk factors for recurrence and metastasis after breast-conserving therapy for ductal carcinoma-in-situ: analysis of European Organization for Research and Treatment of Cancer Trial 10853,” Journal of Clinical Oncology, vol. 19, no. 8, pp. 2263–2271, 2001. View at Google Scholar · View at Scopus
  11. P. Coates, J. Dewar, and A. M. Thompson, “At last, a predictive and prognostic marker for radiotherapy?” Breast Cancer Research, vol. 12, no. 3, p. 106, 2010. View at Google Scholar
  12. D. F. Hayes, C. Isaacs, and V. Stearns, “Prognostic factors in breast cancer: current and new predictors of metastasis,” Journal of Mammary Gland Biology and Neoplasia, vol. 6, no. 4, pp. 375–392, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. G. D. Leonard and S. M. Swain, “Ductal carcinoma In Situ, complexities and challenges,” Journal of the National Cancer Institute, vol. 96, no. 12, pp. 906–920, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Agnihotri, S. Kumar, and K. Mehta, “Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer,” Breast Cancer Research, vol. 15, article 202, no. 1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. P. van der Groep, P. J. van Diest, Y. H. C. M. Smolders et al., “HIF-1α overexpression in ductal carcinoma in situ of the breast in BRCA1 and BRCA2 mutation carriers,” PLoS ONE, vol. 8, no. 2, Article ID e56055, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Gundemir, G. Colak, J. Feola, R. Blouin, and G. V. W. Johnson, “Transglutaminase 2 facilitates or ameliorates HIF signaling and ischemic cell death depending on its conformation and localization,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1833, no. 1, pp. 1–10, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. L. S. Mangala, B. Arun, A. A. Sahin, and K. Mehta, “Tissue transglutaminase-induced alterations in extracellular matrix inhibit tumor invasion,” Molecular Cancer, vol. 4, article 33, 2005. View at Publisher · View at Google Scholar · View at Scopus