Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 186864, 12 pages
http://dx.doi.org/10.1155/2014/186864
Review Article

A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

1Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Chemistry, Faculty of Sciences, Guilan University, Rasht, Iran
4Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr 3631, Iran

Received 21 January 2014; Accepted 28 March 2014; Published 29 April 2014

Academic Editor: José Carlos Tavares Carvalho

Copyright © 2014 Soheil Zorofchian Moghadamtousi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. P. T. Ammon and M. A. Wahl, “Pharmacology of Curcuma longa,” Planta Medica, vol. 57, no. 1, pp. 1–7, 1991. View at Google Scholar · View at Scopus
  2. P. K. Lai and J. Roy, “Antimicrobial and chemopreventive properties of herbs and spices,” Current Medicinal Chemistry, vol. 11, no. 11, pp. 1451–1460, 2004. View at Google Scholar · View at Scopus
  3. R. K. Maheshwari, A. K. Singh, J. Gaddipati, and R. C. Srimal, “Multiple biological activities of curcumin: a short review,” Life Sciences, vol. 78, no. 18, pp. 2081–2087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Hayakawa, Y. Minanyia, K. Ito, Y. Yamamoto, and T. Fukuda, “Difference of curcumin content in Curcuma longa L., (Zingiberaceae) caused by Hybridization with other Curcuma species,” American Journal of Plant Sciences, vol. 2, no. 2, pp. 111–119, 2011. View at Publisher · View at Google Scholar
  5. P. Anand, H. B. Nair, B. Sung et al., “Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo,” Biochemical Pharmacology, vol. 79, no. 3, pp. 330–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. C. Araújo and L. L. Leon, “Biological activities of Curcuma longa L,” Memorias do Instituto Oswaldo Cruz, vol. 96, no. 5, pp. 723–728, 2001. View at Google Scholar · View at Scopus
  7. T. Rudrappa and H. P. Bais, “Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models,” Journal of Agricultural and Food Chemistry, vol. 56, no. 6, pp. 1955–1962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. LaColla, E. Tramontano, C. Musiu, M. E. Marongiu, E. Novellino, and G. Greco, “Curcumin-like derivatives with potent activity against HIV-1 integrase: synthesis, biological evaluation and molecular modeling,” Antiviral Research, vol. 37, no. 3, pp. 57–57, 1998. View at Google Scholar
  9. P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Ammayappan and J. Jeyakodi Moses, “Study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and rabbit hair,” Fibers and Polymers, vol. 10, no. 2, pp. 161–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Han and Y. Yang, “Antimicrobial activity of wool fabric treated with curcumin,” Dyes and Pigments, vol. 64, no. 2, pp. 157–161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Varaprasad, K. Vimala, S. Ravindra, N. Narayana Reddy, G. Venkata Subba Reddy, and K. Mohana Raju, “Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications,” Journal of Materials Science: Materials in Medicine, vol. 22, no. 8, pp. 1863–1872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. H. Liu and H. Y. Huang, “Antimicrobial activity of curcumin-loaded myristic acid microemulsions against Staphylococcus epidermidis,” Chemical and Pharmaceutical Bulletin, vol. 60, no. 9, pp. 1118–1124, 2012. View at Google Scholar
  14. R. Wise, T. Hart, O. Cars et al., “Antimicrobial resistance. Is a major threat to public health,” British Medical Journal, vol. 317, no. 7159, pp. 609–610, 1998. View at Google Scholar · View at Scopus
  15. N. Niamsa and C. Sittiwet, “Antimicrobial activity of Curcuma longa aqueous extract,” Journal of Pharmacology and Toxicology, vol. 4, no. 4, pp. 173–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Ungphaiboon, T. Supavita, P. Singchangchai, S. Sungkarak, P. Rattanasuwan, and A. Itharat, “Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients,” Songklanakarin Journal of Science and Technology, vol. 27, no. 2, pp. 269–578, 2005. View at Google Scholar
  17. O.-A. Lawhavinit, N. Kongkathip, and B. Kongkathip, “Antimicrobial activity of curcuminoids from Curcuma longa L. on pathogenic bacteria of shrimp and chicken,” Kasetsart Journal—Natural Science, vol. 44, no. 3, pp. 364–371, 2010. View at Google Scholar · View at Scopus
  18. I. M. Hosny, W. I. El Kholy, H. A. Murad, and R. K. El Dairouty, “Antimicrobial activity of Curcumin upon pathogenic microorganisms during manufacture and storage of a novel style cheese ‘Karishcum’,” Journal of American Science, vol. 7, pp. 611–618, 2011. View at Google Scholar
  19. P. S. Negi, G. K. Jayaprakasha, L. J. M. Rao, and K. K. Sakariah, “Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture,” Journal of Agricultural and Food Chemistry, vol. 47, no. 10, pp. 4297–4300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. S. H. Mun, D. K. Joung, Y. S. Kim et al., “Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus,” Phytotherapy Research, vol. 19, no. 7, pp. 599–604, 2013. View at Google Scholar
  21. S. Tajbakhsh, K. Mohammadi, I. Deilami et al., “Antibacterial activity of indium curcumin and indium diacetylcurcumin,” African Journal of Biotechnology, vol. 7, no. 21, pp. 3832–3835, 2008. View at Google Scholar · View at Scopus
  22. D. Rai, J. K. Singh, N. Roy, and D. Panda, “Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity,” Biochemical Journal, vol. 410, no. 1, pp. 147–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Kaur, N. H. Modi, D. Panda, and N. Roy, “Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ—a structural insight to unveil antibacterial activity of curcumin,” European Journal of Medicinal Chemistry, vol. 45, no. 9, pp. 4209–4214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. J. Li, L. J. Zhang, B. J. Dezube, C. S. Crumpacker, and A. B. Pardee, “Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1839–1842, 1993. View at Google Scholar · View at Scopus
  25. S. Barthelemy, L. Vergnes, M. Moynier, D. Guyot, S. Labidalle, and E. Bahraoui, “Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat,” Research in Virology, vol. 149, no. 1, pp. 43–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Sui, R. Salto, J. Li, C. Craik, and P. R. Ortiz de Montellano, “Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes,” Bioorganic & Medicinal Chemistry, vol. 1, no. 6, pp. 415–422, 1993. View at Google Scholar · View at Scopus
  27. A. Mazumder, K. Raghavan, J. Weinstein, K. W. Kohn, and Y. Pommier, “Inhibition of human immunodeficiency virus type-1 integrase by curcumin,” Biochemical Pharmacology, vol. 49, no. 8, pp. 1165–1170, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Balasubramanyam, R. A. Varier, M. Altaf et al., “Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription,” The Journal of Biological Chemistry, vol. 279, no. 49, pp. 51163–51171, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. S. James, “Curcumin: clinical trial finds no antiviral effect,” AIDS Treatment News, no. 242, pp. 1–2, 1996. View at Google Scholar · View at Scopus
  30. D.-Y. Chen, J.-H. Shien, L. Tiley et al., “Curcumin inhibits influenza virus infection and haemagglutination activity,” Food Chemistry, vol. 119, no. 4, pp. 1346–1351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Zandi, E. Ramedani, K. Mohammadi et al., “Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line,” Natural Product Communications, vol. 5, no. 12, pp. 1935–1938, 2010. View at Google Scholar · View at Scopus
  32. S. B. Kutluay, J. Doroghazi, M. E. Roemer, and S. J. Triezenberg, “Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity,” Virology, vol. 373, no. 2, pp. 239–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Z. Bourne, N. Bourne, S. F. Reising, and L. R. Stanberry, “Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2,” Antiviral Research, vol. 42, no. 3, pp. 219–226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Si, Y. Wang, J. Wong, J. Zhang, B. M. McManus, and H. Luo, “Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication,” Journal of Virology, vol. 81, no. 7, pp. 3142–3150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. J. Kim, H. S. Yoo, J. C. Kim et al., “Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication,” Journal of Ethnopharmacology, vol. 124, no. 2, pp. 189–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Kim, K. H. Kim, H. Y. Kim, H. K. Cho, N. Sakamoto, and J. Cheong, “Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway,” FEBS Letters, vol. 584, no. 4, pp. 707–712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. S. Divya and M. R. Pillai, “Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis,” Molecular Carcinogenesis, vol. 45, no. 5, pp. 320–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. B. K. Prusty and B. C. Das, “Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin,” International Journal of Cancer, vol. 113, no. 6, pp. 951–960, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Dutta, D. Ghosh, and A. Basu, “Curcumin protects neuronal cells from japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system,” Journal of Neuroimmune Pharmacology, vol. 4, no. 3, pp. 328–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Tomita, H. Kawakami, J.-N. Uchihara et al., “Curcumin suppresses constitutive activation of AP-1 by downregulation of JunD protein in HTLV-1-infected T-cell lines,” Leukemia Research, vol. 30, no. 3, pp. 313–321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. R. De, P. Kundu, S. Swarnakar et al., “Antimicrobial activity of curcumin against helicobacter pylori isolates from India and during infections in mice,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 4, pp. 1592–1597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Foryst-Ludwig, M. Neumann, W. Schneider-Brachert, and M. Naumann, “Curcumin blocks NF-κB and the motogenic response in Helicobacter pylori-infected epithelial cells,” Biochemical and Biophysical Research Communications, vol. 316, no. 4, pp. 1065–1072, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Kundu, R. De, I. Pal, A. K. Mukhopadhyay, D. R. Saha, and S. Swarnakar, “Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of Helicobacter pylori infection in cultured cells and mice,” PLoS ONE, vol. 6, no. 1, Article ID e16306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Koosirirat, S. Linpisarn, D. Changsom, K. Chawansuntati, and J. Wipasa, “Investigation of the anti-inflammatory effect of Curcuma longa in Helicobacter pylori-infected patients,” International Immunopharmacology, vol. 10, no. 7, pp. 815–818, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Di Mario, L. G. Cavallaro, A. Nouvenne et al., “A curcumin-based 1-week triple therapy for eradication of Helicobacter pylori infection: something to learn from failure?” Helicobacter, vol. 12, no. 3, pp. 238–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Sintara, D. Thong-Ngam, S. Patumraj, N. Klaikeaw, and T. Chatsuwan, “Curcumin suppresses gastric NF-κB activation and macromolecular leakage in Helicobacter pylori-infected rats,” World Journal of Gastroenterology, vol. 16, no. 32, pp. 4039–4046, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. F. C. Odds, “Synergy, antagonism, and what the chequerboard puts between them,” Journal of Antimicrobial Chemotherapy, vol. 52, no. 1, p. 1, 2003. View at Google Scholar · View at Scopus
  48. T. Amrouche, K. S. Noll, Y. Wang, Q. Huang, and M. L. Chikindas, “Antibacterial activity of subtilosin alone and combined with curcumin, poly-lysine and zinc lactate against listeria monocytogenes strains,” Probiotics and Antimicrobial Proteins, vol. 2, no. 4, pp. 250–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. K. M. Moghaddam, M. Iranshahi, M. C. Yazdi, and A. R. Shahverdi, “The combination effect of curcumin with different antibiotics against Staphylococcus aureus,” International Journal of Green Pharmacy, vol. 3, no. 2, pp. 141–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. A. Marathe, R. Kumar, P. Ajitkumar, V. Nagaraja, and D. Chakravortty, “Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella Typhimurium and Salmonella Typhi,” Journal of Antimicrobial Chemotherapy, vol. 68, no. 1, pp. 139–152, 2013. View at Google Scholar
  51. S. Hatamie, M. Nouri, S. K. Karandikar et al., “Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents,” Materials Science and Engineering C, vol. 32, no. 2, pp. 92–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Varaprasad, Y. M. Mohan, K. Vimala, and K. Mohana Raju, “Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application,” Journal of Applied Polymer Science, vol. 121, no. 2, pp. 784–796, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Vimala, Y. M. Mohan, K. Varaprasad et al., “Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity,” Journal of Biomaterials and Nanobiotechnology, vol. 2, no. 1, pp. 55–64, 2011. View at Google Scholar
  54. M. Karaman, F. Fırıncı, Z. Arıkan Ayyıldız, and I. H. Bahar, “Effects of Imipenem, Tobramycin and Curcumin on biofilm formation of Pseudomonas aeruginosa strains,” Mikrobiyoloji Bulteni, vol. 47, no. 1, pp. 192–194, 2013. View at Google Scholar
  55. S. A. Marathe, S. Ray, and D. Chakravortty, “Curcumin increases the pathogenicity of Salmonella enterica serovar typhimurium in Murine model,” PLoS ONE, vol. 5, no. 7, Article ID e11511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Tomei, S. Altamura, G. Paonessa, R. De Francesco, and G. Migliaccio, “HCV antiviral resistance: the impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase,” Antiviral Chemistry & Chemotherapy, vol. 16, no. 4, pp. 225–245, 2005. View at Google Scholar · View at Scopus
  57. M. Lemoine, S. Nayagam, and M. Thursz, “Viral hepatitis in resource-limited countries and access to antiviral therapies: current and future challenges,” Future Virology, vol. 8, no. 4, pp. 371–380, 2013. View at Google Scholar
  58. E. De Clercq, “Strategies in the design of antiviral drugs,” Nature Reviews Drug Discovery, vol. 1, no. 1, pp. 13–25, 2002. View at Google Scholar · View at Scopus
  59. S. A. A. Jassim and M. A. Naji, “Novel antiviral agents: a medicinal plant perspective,” Journal of Applied Microbiology, vol. 95, no. 3, pp. 412–427, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Zorofchian Moghadamtousi, M. Hajrezaei, H. Abdul Kadir, and K. Zandi, “Loranthus micranthus Linn.: biological activities and phytochemistry,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 273712, 9 pages, 2013. View at Publisher · View at Google Scholar
  61. I. Dairaku, Y. Han, N. Yanaka, and N. Kato, “Inhibitory effect of curcumin on IMP dehydrogenase, the target for anticancer and antiviral chemotherapy agents,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 1, pp. 185–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. R. K. Singh, D. Rai, D. Yadav, A. Bhargava, J. Balzarini, and E. De Clercq, “Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid,” European Journal of Medicinal Chemistry, vol. 45, no. 3, pp. 1078–1086, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. G. J. Nabel, S. A. Rice, D. M. Knipe, and D. Baltimore, “Alternative mechamisms for activation of human immunodeficiency virus enhancer in T cells,” Science, vol. 239, no. 4845, pp. 1299–1302, 1988. View at Google Scholar · View at Scopus
  64. B. R. Cullen and W. C. Greene, “Regulatory pathways governing HIV-1 replication,” Cell, vol. 58, no. 3, pp. 423–426, 1989. View at Google Scholar · View at Scopus
  65. A. Mazumder, N. Neamati, S. Sunder et al., “Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action,” Journal of Medicinal Chemistry, vol. 40, no. 19, pp. 3057–3063, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Chauhan, G. Rath, and A. K. Goyal, “In-vitro anti-viral screening and cytotoxicity evaluation of copper-curcumin complex,” Artificial Cells, Nanomedicine and Biotechnology, vol. 41, no. 4, pp. 276–281, 2013. View at Google Scholar
  67. C. Kawai, “From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future,” Circulation, vol. 99, no. 8, pp. 1091–1100, 1999. View at Google Scholar · View at Scopus
  68. C.-K. Lee, K. Kono, E. Haas et al., “Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate,” Journal of General Virology, vol. 86, no. 1, pp. 197–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. X. Si, B. M. McManus, J. Zhang et al., “Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway,” Journal of Virology, vol. 79, no. 13, pp. 8014–8023, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Ganem and A. M. Prince, “Hepatitis B virus infection—natural history and clinical consequences,” The New England Journal of Medicine, vol. 350, no. 11, pp. 1118–1129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA: A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Google Scholar · View at Scopus
  72. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA: A Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. C.-J. Chen, S.-L. Raung, M.-D. Kuo, and Y.-M. Wang, “Suppression of Japanese encephalitis virus infection by non-steroidal anti-inflammatory drugs,” Journal of General Virology, vol. 83, no. 8, pp. 1897–1905, 2002. View at Google Scholar · View at Scopus
  74. M. Fujii, T. Niki, T. Mori et al., “HTLV-1 tax induces expression of various immediate early serum responsive genes,” Oncogene, vol. 6, no. 6, pp. 1023–1029, 1991. View at Google Scholar · View at Scopus
  75. R. S. Upendra, P. Khandelwal, and A. H. M. Reddy, “Turmeric powder (Curcuma longa Linn.) as an antifungal agent in plant tissue culture studies,” International Journal of Engineering Science, vol. 3, no. 11, pp. 7899–7904, 2011. View at Google Scholar
  76. M.-K. Kim, G.-J. Choi, and H.-S. Lee, “Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse,” Journal of Agricultural and Food Chemistry, vol. 51, no. 6, pp. 1578–1581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Chowdhury, T. Banerjee, and S. Walia, “In vitro screening of Curcuma longa L and its derivatives sa antifungal agents against Helminthosporrum oryzae and Fusarium solani,” Pesticide Research Journal, vol. 20, no. 1, pp. 6–9, 2008. View at Google Scholar
  78. M. Wuthi-udomlert, W. Grisanapan, O. Luanratana, and W. Caichompoo, “Antifungal activity of Curcuma longa grown in Thailand,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 31, no. 1, pp. 178–182, 2000. View at Google Scholar · View at Scopus
  79. A. Apisariyakul, N. Vanittanakom, and D. Buddhasukh, “Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae),” Journal of Ethnopharmacology, vol. 49, no. 3, pp. 163–169, 1995. View at Publisher · View at Google Scholar · View at Scopus
  80. C. V. B. Martins, D. L. Da Silva, A. T. M. Neres et al., “Curcumin as a promising antifungal of clinical interest,” Journal of Antimicrobial Chemotherapy, vol. 63, no. 2, pp. 337–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Sharma, R. Manoharlal, N. Puri, and R. Prasad, “Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans,” Bioscience Reports, vol. 30, no. 6, pp. 391–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Neelofar, S. Shreaz, B. Rimple, S. Muralidhar, M. Nikhat, and L. A. Khan, “Curcumin as a promising anticandidal of clinical interest,” Canadian Journal of Microbiology, vol. 57, no. 3, pp. 204–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. W. Jianhua and W. Hai, “Antifungal susceptibility analysis of berberine, baicalin, eugenol and curcumin on Candida albicans,” Journal of Medical Colleges of PLA, vol. 24, no. 3, pp. 142–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. N. Khan, S. Shreaz, R. Bhatia et al., “Anticandidal activity of curcumin and methyl cinnamaldehyde,” Fitoterapia, vol. 83, no. 3, pp. 434–440, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Sharma, R. Manoharlal, A. S. Negi, and R. Prasad, “Synergistic anticandidal activity of pure polyphenol curcumin i in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis,” FEMS Yeast Research, vol. 10, no. 5, pp. 570–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Karaman, Z. Arıkan Ayyıldız, F. Fırıncı et al., “Effects of curcumin on lung histopathology and fungal burden in a mouse model of chronic asthma and oropharyngeal candidiasis,” Archives of Medical Research, vol. 42, no. 2, pp. 79–87, 2011. View at Google Scholar
  87. L. N. Dovigo, A. C. Pavarina, J. C. Carmello, A. L. MacHado, I. L. Brunetti, and V. S. Bagnato, “Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin,” Lasers in Surgery and Medicine, vol. 43, no. 9, pp. 927–934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro et al., “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochemistry and Photobiology, vol. 87, no. 4, pp. 895–903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. L. N. Dovigo, J. C. Carmello, C. A. de Souza Costa et al., “Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis,” Medical Mycology, vol. 51, no. 3, pp. 243–251, 2013. View at Google Scholar
  90. S.-M. Tsao and M.-C. Yin, “Enhanced inhibitory effect from interaction of curcumin with amphotericin B or fluconazole against Candida species,” Journal of Food and Drug Analysis, vol. 8, no. 3, pp. 208–212, 2000. View at Google Scholar · View at Scopus
  91. A. K. Kudva, M. N. Manoj, B. N. Swamy, and C. S. Ramadoss, “Complexation of amphoterecin B and curcumin with serum albumin: solubility and effect on erythrocyte membrane damage,” Journal of Experimental Pharmacology, vol. 3, pp. 1–6, 2011. View at Publisher · View at Google Scholar
  92. O. A. K. Khalil, O. M. M. de Faria Oliveira, J. C. R. Vellosa et al., “Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid,” Food Chemistry, vol. 133, no. 3, pp. 1001–1005, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Mohanty, M. Das, and S. K. Sahoo, “Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin,” Expert Opinion on Drug Delivery, vol. 9, no. 11, pp. 1347–1364, 2012. View at Google Scholar
  94. B. T. Kurien, A. Singh, H. Matsumoto, and R. H. Scofield, “Improving the solubility and pharmacological efficacy of curcumin by heat treatment,” Assay and Drug Development Technologies, vol. 5, no. 4, pp. 567–576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. B. Bhawana, R. K. Basniwal, H. S. Buttar, V. K. Jain, and N. Jain, “Curcumin nanoparticles: preparation, characterization, and antimicrobial study,” Journal of Agricultural and Food Chemistry, vol. 59, no. 5, pp. 2056–2061, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Shailendiran, N. Pawar, A. Chanchal, R. P. Pandey, H. B. Bohidar, and A. K. Verma, “Characterization and antimicrobial activity of nanocurcumin and curcumin,” in Proceedings of the International Conference on Nanoscience, Technology and Societal Implications (NSTSI '11), pp. 1–7, IEEE, December 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Wang, Z. Lu, H. Wu, and F. Lv, “Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens,” International Journal of Food Microbiology, vol. 136, no. 1, pp. 71–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. Y.-F. Wang, J.-J. Shao, C.-H. Zhou et al., “Food preservation effects of curcumin microcapsules,” Food Control, vol. 27, no. 1, pp. 113–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Hatcher, R. Planalp, J. Cho, F. M. Torti, and S. V. Torti, “Curcumin: from ancient medicine to current clinical trials,” Cellular and Molecular Life Sciences, vol. 65, no. 11, pp. 1631–1652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. S. C. Gupta, G. Kismali, and B. B. Aggarwal, “Curcumin, a component of turmeric: from farm to pharmacy,” Biofactors, vol. 39, no. 1, pp. 2–13, 2013. View at Google Scholar