Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 189495, 14 pages
http://dx.doi.org/10.1155/2014/189495
Research Article

In Silico Investigation of Potential Pyruvate Kinase M2 Regulators from Traditional Chinese Medicine against Cancers

1School of Pharmacy, China Medical University, Taichung 40402, Taiwan
2School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
3Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
4Department of Anesthesiology, China Medical University Hospital, Taichung 40447, Taiwan
5Human Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
6Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan

Received 22 February 2014; Revised 5 March 2014; Accepted 5 March 2014; Published 25 June 2014

Academic Editor: Chung Y. Hsu

Copyright © 2014 Kuan-Chung Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.-M. Chang, B. K. Velmurugan, W. W. Kuo et al., “Inhibitory effect of alpinate Oxyphyllae fructus extracts on Ang II-induced cardiac pathological remodeling-related pathways in H9c2 cardiomyoblast cells,” BioMedicine, vol. 3, no. 4, pp. 148–152, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. M. Leung, K. L. Wong, S. W. Chen et al., “Down-regulation of voltage-gated Ca2+ channels in Ca2+ store-depleted rat insulinoma RINm5F cells,” BioMedicine, vol. 3, no. 3, pp. 130–139, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Leissring, E. Malito, S. Hedouin et al., “Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin,” PLoS ONE, vol. 5, no. 5, Article ID e10504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M.-C. Lin, S.-Y. Tsai, F.-Y. Wang et al., “Leptin induces cell invasion and the upregulation of matrilysin in human colon cancer cells,” BioMedicine, vol. 3, no. 4, pp. 174–180, 2013. View at Google Scholar
  5. V. Janssens and J. Goris, “Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling,” Biochemical Journal, vol. 353, no. 3, pp. 417–439, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Jiang, X. Li, W. Yang et al., “PKM2 regulates chromosome segregation and mitosis progression of tumor cells,” Molecular Cell, vol. 53, no. 1, pp. 75–87, 2014. View at Google Scholar
  7. H. R. Christofk, M. G. Vander Heiden, M. H. Harris et al., “The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth,” Nature, vol. 452, no. 7184, pp. 230–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Anastasiou, Y. Yu, W. J. Israelsen et al., “Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis,” Nature Chemical Biology, vol. 8, no. 10, pp. 839–847, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Kung, J. Hixon, S. Choe et al., “Small molecule activation of pkm2 in cancer cells induces serine auxotrophy,” Chemistry and Biology, vol. 19, no. 9, pp. 1187–1198, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Y.-C. Chen, “A novel integrated framework and improved methodology of computer-aided drug design,” Current Topics in Medicinal Chemistry, vol. 13, no. 9, pp. 965–988, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. H. J. Huang, H. W. Yu, C. Y. Chen et al., “Current developments of computer-aided drug design,” Journal of the Taiwan Institute of Chemical Engineers, vol. 41, no. 6, pp. 623–635, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Y. Chen and C. Y. C. Chen, “Insights into designing the dual-targeted HER2/HSP90 inhibitors,” Journal of Molecular Graphics and Modelling, vol. 29, no. 1, pp. 21–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. C. Yang, S. S. Chang, H. Y. Chen, and C. Y. C. Chen, “Identification of potent EGFR inhibitors from TCM Database@Taiwan,” PLoS Computational Biology, vol. 7, no. 10, Article ID e1002189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. A. Tsou, K. C. Chen, H. C. Lin, S. S. Chang, and C. Y. C. Chen, “Uroporphyrinogen decarboxylase as a potential target for specific components of traditional chinese medicine: a virtual screening and Molecular Dynamics Study,” PLoS ONE, vol. 7, no. 11, Article ID e50087, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. K. C. Chen, S. S. Chang, H. J. Huang, T. L. Lin, Y. J. Wu, and C. Y. C. Chen, “Three-in-one agonists for PPAR-a, PPAR-γ, and PPAR-d from traditional Chinese medicine,” Journal of Biomolecular Structure and Dynamics, vol. 30, no. 6, pp. 662–683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. K. C. Chen, S. S. Chang, F. J. Tsai, and C. Y. Chen, “Han ethnicity-specific type 2 diabetic treatment from traditional Chinese medicine?” Journal of Biomolecular Structure & Dynamics, vol. 31, no. 11, pp. 1219–1235, 2013. View at Google Scholar
  17. K. C. Chen and C. Yu-Chian Chen, “Stroke prevention by traditional Chinese medicine? A genetic algorithm, support vector machine and molecular dynamics approach,” Soft Matter, vol. 7, no. 8, pp. 4001–4008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. K. C. Chen, K. W. Chang, H. Y. Chen, and C. Y. C. Chen, “Traditional Chinese medicine, a solution for reducing dual stroke risk factors at once?” Molecular BioSystems, vol. 7, no. 9, pp. 2711–2719, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. C. Chen, M. F. Sun, S. C. Yang et al., “Investigation into potent inflammation inhibitors from traditional Chinese medicine,” Chemical Biology & Drug Design, vol. 78, no. 4, pp. 679–688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W. I. Tou, S. S. Chang, C. C. Lee, and C. Y. C. Chen, “Drug design for neuropathic pain regulation from traditional Chinese medicine,” Scientific reports, vol. 3, p. 844, 2013. View at Google Scholar · View at Scopus
  21. C. Y. C. Chen, “TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening in Silico,” PLoS ONE, vol. 6, no. 1, Article ID e15939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Y. C. Chen and W. I. Tou, “How to design a drug for the disordered proteins?” Drug Discovery Today, vol. 18, no. 19-20, pp. 910–915, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Xue, R. L. Dunbrack, R. W. Williams, A. K. Dunker, and V. N. Uversky, “PONDR-FIT: a meta-predictor of intrinsically disordered amino acids,” Biochimica et Biophysica Acta—Proteins and Proteomics, vol. 1804, no. 4, pp. 996–1010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson et al., “CHARMM: a program for macromolecular energy minimization and dynamics calculations,” Journal of Computational Chemistry, vol. 4, pp. 187–217, 1983. View at Google Scholar
  25. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 46, no. 1–3, pp. 3–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. C. M. Venkatachalam, X. Jiang, T. Oldfield, and M. Waldman, “LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites,” Journal of Molecular Graphics and Modelling, vol. 21, no. 4, pp. 289–307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Zoete, M. A. Cuendet, A. Grosdidier, and O. Michielin, “SwissParam: a fast force field generation tool for small organic molecules,” Journal of Computational Chemistry, vol. 32, no. 11, pp. 2359–2368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Fletcher, Optimization, Academic Press, New York, NY, USA, 1969.