Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 189516, 10 pages
http://dx.doi.org/10.1155/2014/189516
Research Article

Effect of Cyclic Mechanical Stimulation on the Expression of Osteogenesis Genes in Human Intraoral Mesenchymal Stromal and Progenitor Cells

1Department of Orthopaedic Surgery, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
2Department of Oral Surgery and Radiology, School of Dental Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
3Center for Medical Research, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria

Received 9 December 2013; Revised 3 March 2014; Accepted 4 March 2014; Published 7 April 2014

Academic Editor: Jiang Chang

Copyright © 2014 Birgit Lohberger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Quarto, M. Mastrogiacomo, R. Cancedda et al., “Repair of large bone defects with the use of autologous bone marrow stromal cells,” The New England Journal of Medicine, vol. 344, no. 5, pp. 385–386, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Kon, G. Filardo, A. Roffi et al., “Bone regeneration with mesenchymal stem cells,” Clinical Cases in Mineral and Bone Metabolism, vol. 9, no. 1, pp. 24–27, 2012. View at Google Scholar
  3. P. J. Marie, “Cell and gene therapy for bone repair,” Osteoporosis International, vol. 22, no. 6, pp. 2023–2026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Clausen, N. U. Hermund, O. Donatsky, and H. Nielsen, “Characterization of human bone cells derived from the maxillary alveolar ridge,” Clinical Oral Implants Research, vol. 17, no. 5, pp. 533–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. E. M. Horwitz, D. J. Prockop, L. A. Fitzpatrick et al., “Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta,” Nature Medicine, vol. 5, no. 3, pp. 309–313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. E. M. Horwitz, P. L. Gordon, W. K. K. Koo et al., “Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8932–8937, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Lohberger, M. Payer, B. Rinner et al., “Tri-lineage potential of intraoral tissue-derived mesenchymal stromal cells,” Journal of Cranio-Maxillofacial Surgery, vol. 41, no. 2, pp. 110–118, 2013. View at Publisher · View at Google Scholar
  8. P. J. Boyne and R. A. James, “Grafting of the maxillary sinus floor with autogenous marrow and bone,” Journal of Oral Surgery, vol. 38, no. 8, pp. 613–616, 1980. View at Google Scholar · View at Scopus
  9. N. Jakse, F.-J. Seibert, M. Lorenzoni, A. Eskici, and C. Pertl, “A modified technique of harvesting tibial cancellous bone and its use for sinus grafting,” Clinical Oral Implants Research, vol. 12, no. 5, pp. 488–494, 2001. View at Google Scholar · View at Scopus
  10. C. Y. Lee, “Immediate load protocol for anterior maxilla with cortical bone from mandibular ramus,” Implant Dentistry, vol. 15, no. 2, pp. 153–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Meyer, H. P. Wiesmann, B. Kruse-Lösler, J. Handschel, U. Stratmann, and U. Joos, “Strain-related bone remodeling in distraction osteogenesis of the mandible,” Plastic and Reconstructive Surgery, vol. 103, no. 3, pp. 800–807, 1999. View at Google Scholar · View at Scopus
  12. E. G. Loboa, T. D. Fang, S. M. Warren et al., “Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model,” Bone, vol. 34, no. 2, pp. 336–343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. N. A. Waanders, M. Richards, H. Steen, J. L. Kuhn, S. A. Goldstein, and J. A. Goulet, “Evaluation of the mechanical environment during distraction osteogenesis,” Clinical Orthopaedics and Related Research, no. 349, pp. 225–234, 1998. View at Google Scholar · View at Scopus
  14. E. A. Smith-Adaline, S. K. Volkman, M. A. Ignelzi Jr., J. Slade, S. Platte, and S. A. Goldstein, “Mechanical environment alters tissue formation patterns during fracture repair,” Journal of Orthopaedic Research, vol. 22, no. 5, pp. 1079–1085, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Friedl, H. Schmidt, I. Rehak, G. Kostner, K. Schauenstein, and R. Windhager, “Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro,” Osteoarthritis and Cartilage, vol. 15, no. 11, pp. 1293–1300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. D. Sumanasinghe, S. H. Bernacki, and E. G. Loboa, “Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression,” Tissue Engineering, vol. 12, no. 12, pp. 3459–3465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Peters, D. Toben, J. Lienau et al., “Locally applied osteogenic predifferentiated progenitor cells are more effective than undifferentiated mesenchymal stem cells in the treatment of delayed bone healing,” Tissue Engineering A, vol. 15, no. 10, pp. 2947–2954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Schallmoser, C. Bartmann, E. Rohde et al., “Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells,” Transfusion, vol. 47, no. 8, pp. 1436–1446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Bartmann, E. Rohde, K. Schallmoser et al., “Two steps to functional mesenchymal stromal cells for clinical application,” Transfusion, vol. 47, no. 8, pp. 1426–1435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Sabokbar, P. J. Millett, B. Myer, and N. Rushton, “A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro,” Bone and Mineral, vol. 27, no. 1, pp. 57–67, 1994. View at Google Scholar · View at Scopus
  21. C. A. Gregory, W. G. Gunn, A. Peister, and D. J. Prockop, “An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction,” Analytical Biochemistry, vol. 329, no. 1, pp. 77–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Bustin, V. Benes, J. A. Garson et al., “The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments,” Clinical Chemistry, vol. 55, no. 4, pp. 611–622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Vandesompele, K. de Preter, F. Pattyn et al., “Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes,” Genome Biology, vol. 3, no. 7, 2002. View at Google Scholar · View at Scopus
  24. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Kon, A. Muraglia, A. Corsi et al., “Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones,” Journal of Biomedical Materials Research, vol. 49, no. 3, pp. 328–337, 2000. View at Google Scholar
  26. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Mafi, S. Hindocha, P. Mafi, M. Griffin, and W. S. Khan, “Sources of adult mesenchymal stem cells applicable for muscoskeletal applications–a systematic review of the literature,” Open Orthopaedics Journal, vol. 2, pp. 242–248, 2011. View at Google Scholar
  28. G. Yu, X. Wu, M. A. Dietrich et al., “Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes,” Cytotherapy, vol. 12, no. 4, pp. 538–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Mullender, A. J. El Haj, Y. Yang, M. A. van Duin, E. H. Burger, and J. Klein-Nulend, “Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue,” Medical and Biological Engineering and Computing, vol. 42, no. 1, pp. 14–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Jagodzinski, A. Breitbart, M. Wehmeier et al., “Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture,” Journal of Biomechanics, vol. 41, no. 9, pp. 1885–1891, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Song, Y. Ju, X. Shen, Q. Luo, Y. Shi, and J. Qin, “Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells,” Colloids and Surfaces B: Biointerfaces, vol. 58, no. 2, pp. 271–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Zhao, H. Zhou, X. Wang, J. Dong, Y. Yang, and X. Zhang, “Effect of mechanical strain on differentiation of mesenchymal stem cells into osteoblasts,” Journal of Biomedical Engineering, vol. 26, no. 3, pp. 518–522, 2009. View at Google Scholar · View at Scopus
  33. G. Xiao, D. Wang, M. D. Benson, G. Karsenty, and R. T. Franceschi, “Role of the α2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor,” The Journal of Biological Chemistry, vol. 273, no. 49, pp. 32988–32994, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Shui, T. C. Spelsberg, B. L. Riggs, and S. Khosla, “Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells,” Journal of Bone and Mineral Research, vol. 18, no. 2, pp. 213–221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Jagodzinski, M. Drescher, J. Zeichen et al., “Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells,” European Cells and Materials, vol. 7, pp. 35–41, 2004. View at Google Scholar · View at Scopus
  36. G. N. Bancroft, V. I. Sikavitsas, J. van den Dolder et al., “Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12600–12605, 2002. View at Publisher · View at Google Scholar · View at Scopus