Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 194204, 5 pages
Research Article

Comparison of Riboflavin/Ultraviolet-A Cross-Linking in Porcine, Rabbit, and Human Sclera

1Department of Ophthalmology, The Second People’s Hospital of Jinan, 148 Jingyi Road, Jinan, Shandong 250001, China
2Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, China
3School of Nursing, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, Shandong 264003, China

Received 21 October 2013; Revised 8 December 2013; Accepted 16 December 2013; Published 2 January 2014

Academic Editor: Vasilios F. Diakonis

Copyright © 2014 Yali Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Purpose. To compare the biomechanical properties of porcine, rabbit, and human sclera before and after riboflavin/ultraviolet-A (UVA) collagen cross-linking (CXL). Methods. Eight rabbits, 8 porcine eyeballs, and 8 human eyeballs were included. One rabbit eye and half of each bisected human and porcine eyeball were treated with riboflavin/UVA CXL. Untreated fellow rabbit eyes and eyeball halves served as controls. A 10 mm × 20 mm scleral band was harvested from each specimen. From this band, two 3.5 mm × 15.0 mm strips were prepared for biomechanical testing. The biomechanical parameters were ultimate stress, stress and Young’s modulus. Results. Values of stress, and Young’s modulus showed that human sclera was 4 times stiffer than porcine sclera and 3 times stiffer than rabbit sclera. In rabbit sclera, both the stress and Young’s modulus were significantly increased by CXL (). In porcine sclera, only the ultimate stress was significantly increased by CXL (). The biomechanical properties of human sclera were not statistically affected by CXL (). Conclusions. Human sclera has higher biomechanical stiffness than porcine and rabbit sclera. With the same irradiation dose, riboflavin/UVA CXL increases the biomechanical stiffness of rabbit sclera but not porcine or human sclera.