Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 195162, 14 pages
Review Article

Structural Insight into the DNA-Binding Mode of the Primosomal Proteins PriA, PriB, and DnaT

1School of Biomedical Sciences, Chung Shan Medical University, No. 110, Section 1, Chien-Kuo N. Road, Taichung City 40201, Taiwan
2Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Section 1, Chien-Kuo N. Road, Taichung City 40201, Taiwan

Received 18 April 2014; Revised 20 June 2014; Accepted 1 July 2014; Published 21 July 2014

Academic Editor: Yoshito Abe

Copyright © 2014 Yen-Hua Huang and Cheng-Yang Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Replication restart primosome is a complex dynamic system that is essential for bacterial survival. This system uses various proteins to reinitiate chromosomal DNA replication to maintain genetic integrity after DNA damage. The replication restart primosome in Escherichia coli is composed of PriA helicase, PriB, PriC, DnaT, DnaC, DnaB helicase, and DnaG primase. The assembly of the protein complexes within the forked DNA responsible for reloading the replicative DnaB helicase anywhere on the chromosome for genome duplication requires the coordination of transient biomolecular interactions. Over the last decade, investigations on the structure and mechanism of these nucleoproteins have provided considerable insight into primosome assembly. In this review, we summarize and discuss our current knowledge and recent advances on the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT.