Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 209548, 7 pages
http://dx.doi.org/10.1155/2014/209548
Research Article

A Novel Platelet Concentrate: Titanium-Prepared Platelet-Rich Fibrin

1Department of Periodontology, Haydarpasa Training Hospital, Gulhane Military Medical Academy, Üsküdar, 34618 Istanbul, Turkey
2Department of Periodontology, School of Dentistry, Cumhuriyet University, 58140 Sivas, Turkey
3Department of Medical Pathology, Gulhane Military Medical Academy, 34618 Istanbul, Turkey
4Department of Prosthodontics, School of Dentistry, Selcuk University, 42250 Konya, Turkey
5Department of Periodontology, School of Dentistry, Kocaeli University, 41380 Izmit, Turkey
6Department of Periodontology, School of Dentistry, Istanbul University, 34303 Istanbul, Turkey

Received 24 April 2013; Accepted 2 November 2013; Published 21 January 2014

Academic Editor: Fausto Catena

Copyright © 2014 Mustafa Tunalı et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Choukroun, F. Adda, C. Schoeffler, and A. Vervelle, “An opportunity in perio-implantology: the PRF,” Implantodontie, vol. 42, pp. 55–62, 2001 (French). View at Google Scholar
  2. J. Choukroun, A. Diss, A. Simonpieri et al., “Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 101, no. 3, pp. E56–E60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Choukroun, A. Diss, A. Simonpieri et al., “Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 101, no. 3, pp. 299–303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. Dohan, J. Choukroun, A. Diss et al., “Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 101, no. 3, pp. E37–E44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Dohan, J. Choukroun, A. Diss et al., “Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 101, no. 3, pp. E45–E50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Dohan, J. Choukroun, A. Diss et al., “Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates?” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 101, no. 3, pp. E51–E55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. Dohan Ehrenfest, L. Rasmusson, and T. Albrektsson, “Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF),” Trends in Biotechnology, vol. 27, no. 3, pp. 158–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. M. Dohan Ehrenfest, M. del Corso, F. Inchingolo, G. Sammartino, and J.-B. Charrier, “Platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in human cell cultures: growth factor release and contradictory results,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 110, no. 4, pp. 418–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Aroca, T. Keglevich, B. Barbieri, I. Gera, and D. Etienne, “Clinical evaluation of a modified coronally advanced flap alone or in combination with a platelet-rich fibrin membrane for the treatment of adjacent multiple gingival recessions: a 6-month study,” Journal of Periodontology, vol. 80, no. 2, pp. 244–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Mazor, R. A. Horowitz, M. del Corso, H. S. Prasad, M. D. Rohrer, and D. M. D. Ehrenfest, “Sinus floor augmentation with simultaneous implant placement using Choukroun's platelet-rich fibrin as the sole grafting material: a radiologic and histologic study at 6 months,” Journal of Periodontology, vol. 80, no. 12, pp. 2056–2064, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Sharma and A. R. Pradeep, “Autologous platelet-rich fibrin in the treatment of mandibular degree II furcation defects: a randomized clinical trial,” Journal of Periodontology, vol. 82, no. 10, pp. 1396–1403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Simonpieri, J. Choukroun, M. D. Corso, G. Sammartino, and D. M. D. Ehrenfest, “Simultaneous sinus-lift and implantation using microthreaded implants and leukocyte- and platelet-rich fibrin as sole grafting material: a six-year experience,” Implant Dentistry, vol. 20, no. 1, pp. 2–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. M. O'Connell, “Safety issues associated with platelet-rich fibrin method,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 103, no. 5, pp. 587–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. D. M. D. Ehrenfest, M. del Corso, A. Diss, J. Mouhyi, and J.-B. Charrier, “Three-dimensional architecture and cell composition of a Choukroun's platelet-rich fibrin clot and membrane,” Journal of Periodontology, vol. 81, no. 4, pp. 546–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. M. O'Connell, T. Impeduglia, K. Hessler, X.-J. Wang, R. J. Carroll, and H. Dardik, “Autologous platelet-rich fibrin matrix as cell therapy in the healing of chronic lower-extremity ulcers,” Wound Repair and Regeneration, vol. 16, no. 6, pp. 749–756, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Braccini, L. Tardivet, and D. M. Dohan Ehrenfest, “The relevance of Choukroun's Platelet-Rich Fibrin (PRF) during middle ear surgery: preliminary results,” Revue de Laryngologie Otologie Rhinologie, vol. 130, no. 3, pp. 175–180, 2009. View at Google Scholar · View at Scopus
  17. W. Baeyens, R. Glineur, and L. Evrard, “The use of platelet concentrates: platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF) in bone reconstruction prior to dental implant surgery,” Revue Medicale de Bruxelles, vol. 31, no. 6, pp. 521–527, 2010. View at Google Scholar · View at Scopus
  18. F. Inchingolo, M. Tatullo, M. Marrelli et al., “Trial with platelet-rich fibrin and Bio-Oss used as grafting materials in the treatment of the severe maxillar bone atrophy: clinical and radiological evaluations,” European Review for Medical and Pharmacological Sciences, vol. 14, no. 12, pp. 1075–1084, 2010. View at Google Scholar · View at Scopus
  19. M. Toffler, N. Toscano, and D. Holtzclaw, “Osteotome-mediated sinus floor elevation using only platelet-rich fibrin: an early report on 110 patients,” Implant Dentistry, vol. 19, no. 5, pp. 447–456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Tunalı, H. Özdemir, Z. Küçükodacı, S. Akman, E. Yaprak, and E. Firatlı, “In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate,” British Journal of Oral and Maxillofacial Surgery, vol. 51, no. 5, pp. 438–443, 2012. View at Publisher · View at Google Scholar
  21. M. del Corso, G. Sammartino, and D. M. Dohan Ehrenfest, “Clinical evaluation of a modified coronally advanced flap alone or in combination with a platelet-rich fibrin membrane for the treatment of adjacent multiple gingival recessions: a 6-month study,” Journal of Periodontology, vol. 80, pp. 1694–1697, 2009. View at Google Scholar
  22. H. J. Breme, V. Biehl, and J. A. Helsen, “Metals and implants,” in Metals as Biomaterials, J. A. Helsen and H. J. Breme, Eds., pp. 37–72, John Wiley & Sons, Chichester, UK, 1998. View at Google Scholar
  23. J. B. Park, “Metallic biomaterials,” in The Biomedical Engineering Handbook, J. D. Bronzino, Ed., pp. 537–551, CRC Press, Boca Raton, Fla, USA, 1995. View at Google Scholar
  24. N. J. Hallab, J. J. Jacobs, and J. L. Katz, “Orthopedic applications,” in Biomaterials Science: An Introduction to Materials in Medicine, B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Eds., pp. 526–555, Elsevier, San Diego, Calif, USA, 2004. View at Google Scholar
  25. A. N. Cranin and J. E. Lemons, “Dental implantation,” in BioMaterials Science: An Introduction to Materials in Medicine, B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Eds., pp. 555–572, Elsevier, San Diego, Calif, USA, 2004. View at Google Scholar
  26. S. Takemoto, T. Yamamoto, K. Tsuru, S. Hayakawa, A. Osaka, and S. Takashima, “Platelet adhesion on titanium oxide gels: effect of surface oxidation,” Biomaterials, vol. 25, no. 17, pp. 3485–3492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. S. Eriksson, L. M. Bjursten, L. E. Ericson, and P. Thomsen, “Hollow implants in soft tissues allowing quantitative studies of cells and fluid at the implant interface,” Biomaterials, vol. 9, no. 1, pp. 86–90, 1988. View at Google Scholar · View at Scopus
  28. A. S. Eriksson and P. Thomsen, “Leukotriene B4, interleukin 1 and leucocyte accumulation in titanium and PTFE chambers after implantation in the rat abdominal wall,” Biomaterials, vol. 12, no. 9, pp. 827–830, 1991. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Elwing, P. Tengvall, A. Askendal, and I. Lundström, “'Lens-on-surface': a versatile method for the investigation of plasma protein exchange reactions on solid surfaces,” Journal of Biomaterials Science, vol. 3, no. 1, pp. 7–15, 1991. View at Google Scholar · View at Scopus
  30. T. R. Graham, K. Dasse, A. Coumbe et al., “Neo-intimal development on textured biomaterial surfaces during clinical use of an implantable left ventricular assist device,” European Journal of Cardio-Thoracic Surgery, vol. 4, no. 4, pp. 182–190, 1990. View at Google Scholar · View at Scopus