Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 234813, 7 pages
http://dx.doi.org/10.1155/2014/234813
Clinical Study

The Preoperative Maximum Standardized Uptake Value Measured by 18F-FDG PET/CT as an Independent Prognostic Factor of Overall Survival in Endometrial Cancer Patients

1Department of Obstetrics and Gynecology, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University of Torun, Ujejskiego 75, 85-168 Bydgoszcz, Poland
2Department of Nuclear Medicine, Lukaszczyk Oncology Center of Bydgoszcz, Poland
3Department of Clinical Pathology, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University of Torun, Poland

Received 20 September 2013; Revised 6 November 2013; Accepted 6 November 2013; Published 20 January 2014

Academic Editor: Maria Lina Tornesello

Copyright © 2014 Malgorzata Walentowicz-Sadlecka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2012,” Cancer Journal for Clinicians, vol. 62, no. 1, pp. 10–29, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Markowska and R. Madry, Zarys Ginekologii Onkologicznej, vol. 2, Termedia, Poznan, 2012.
  3. F. F. Bi, D. Li, and Q. Yang, “Hypomethylation of ETS transcription factor binding sites and upregulation of PARP1 expression in endometrial cancer,” BioMed Research International, vol. 2013, Article ID 946268, 5 pages, 2013. View at Publisher · View at Google Scholar
  4. P. Dong, M. Kaneuchi, Y. Konno, H. Watari, S. Sudo, and N. Sakuragi, “Emerging therapeutic biomarkers in endometrial cancer,” BioMed Research International, vol. 2013, Article ID 130362, 11 pages, 2013. View at Publisher · View at Google Scholar
  5. F. Amant, P. Moerman, P. Neven, D. Timmerman, E. Van Limbergen, and I. Vergote, “Endometrial cancer,” The Lancet, vol. 366, no. 9484, pp. 491–505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Tsujikawa, Y. Yoshida, T. Kudo et al., “Functional images reflect aggressiveness of endometrial carcinoma: estrogen receptor expression combined with 18F-FDG PET,” Journal of Nuclear Medicine, vol. 50, no. 10, pp. 1598–1604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. K. Saarelainen, L. Kööbi, R. Järvenpää, M. Laurila, and J. U. Mäenpää, “The preoperative assessment of deep myometrial invasion by three-dimensional ultrasound versus MRI in endometrial carcinoma,” Acta Obstetricia et Gynecologica Scandinavica, vol. 91, no. 8, pp. 983–990, 2012. View at Publisher · View at Google Scholar
  8. K. Perzyło, P. Miotła, E. Lis, and T. Rechberger, “Therapeutic and prognostic value of lymphadenectomy in gynecological oncology,” Ginekologia Polska, vol. 84, no. 7, pp. 630–636, 2013. View at Google Scholar
  9. D. Bhartiya, S. Unni, S. Parte, and S. Anand, “Very small embryonic-like stem cells: implications in reproductive biology,” BioMed Research International, vol. 2013, Article ID 682326, 10 pages, 2013. View at Publisher · View at Google Scholar
  10. Ç. Çetin, S. Özdemir, H. Esen, O. Balc, and O. Yilmaz, “The clinical value of preoperative and intraoperative assessments in the management of endometrial cancer,” International Journal of Gynecological Cancer, vol. 20, no. 3, pp. 358–362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. B. Koolen, M. J. Vrancken Peeters, J. Wesseling et al., “Association of primary tumour FDG uptake with clinical, histopathological and molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 12, pp. 1830–1838, 2012. View at Google Scholar
  12. D. Singh and K. Miles, “Multiparametric PET/CT in oncology,” Cancer Imaging, vol. 12, no. 2, pp. 336–344, 2012. View at Google Scholar
  13. L. Gilardi, C. De Cicco, and G. Paganelli, “Preoperative FDG PET/CT in breast cancer patients: where are we going?” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 11, pp. 1667–1669, 2012. View at Google Scholar
  14. C. M. Quick, T. May, N. S. Horowitz, and M. R. Nucci, “Low-grade, low-stage endometrioid endometrial adenocarcinoma: a clinicopathologic analysis of 324 cases focusing on frequency and pattern of myoinvasion,” International Journal of Gynecological Pathology, vol. 31, no. 4, pp. 337–343, 2012. View at Publisher · View at Google Scholar
  15. T. Hidaka, K. Kato, R. Yonezawa et al., “Omission of lymphadenectomy is possible for low-risk corpus cancer,” European Journal of Surgical Oncology, vol. 33, no. 1, pp. 86–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. C. Paulino and P. A. S. Johnstone, “FDG-PET in radiotherapy treatment planning: pandora's box?” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 1, pp. 4–5, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. B. Fukui, T. M. Blodgett, C. H. Snyderman et al., “Combined PET-CT in the head and neck: part 2. Diagnostic uses and pitfalls of oncologic imaging,” Radiographics, vol. 25, no. 4, pp. 913–930, 2005. View at Google Scholar · View at Scopus
  18. M. Hickeson, M. Yun, A. Matthies et al., “Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET,” European Journal of Nuclear Medicine, vol. 29, no. 12, pp. 1639–1647, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. B. B. Koolen, M. J. Vrancken Peeters, J. Wesseling et al., “Association of primary tumour FDG uptake with clinical, histopathological and molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 12, 2012. View at Google Scholar
  20. K. Nakamura, J. Kodama, Y. Okumura, A. Hongo, S. Kanazawa, and Y. Hiramatsu, “The SUVmax of 18F-FDG PET correlates with histological grade in endometrial cancer,” International Journal of Gynecological Cancer, vol. 20, no. 1, pp. 110–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Nakamura, A. Hongo, J. Kodama, and Y. Hiramatsu, “The measurement of SUVmax of the primary tumor is predictive of prognosis for patients with endometrial cancer,” Gynecologic Oncology, vol. 123, no. 1, pp. 82–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. J. Lee, B.-C. Ahn, C. M. Hong et al., “Preoperative risk stratification using18F-FDG PET/CT in women with endometrial cancer,” NuklearMedizin, vol. 50, no. 5, pp. 204–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Torizuka, F. Nakamura, M. Takekuma et al., “FDG PET for the assessment of myometrial infiltration in clinical stage I uterine corpus cancer,” Nuclear Medicine Communications, vol. 27, no. 6, pp. 481–487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Kitajima, M. Kita, K. Suzuki, M. Senda, Y. Nakamoto, and K. Sugimura, “Prognostic significance of SUVmax (maximum standardized uptake value) measured by [18F]FDG PET/CT in endometrial cancer,” European Journal of Nuclear Medicine and Molecular Imaging, pp. 1–6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Nakamura, I. Joja, C. Fukushima et al., “The preoperative SUVmax is superior to ADCmin of the primary tumour as a predictor of disease recurrence and survival in patients with endometrial cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 40, no. 1, pp. 52–60, 2013. View at Google Scholar
  26. B. Kasper, A. Dimitrakopoulou-Strauss, L. R. Pilz, L. G. Strauss, C. Sachpekidis, and P. Hohenberger, “Positron emission tomography as a surrogate marker for evaluation of treatment response in patients with desmoid tumors under therapy with imatinib,” BioMed Research International, vol. 2013, Article ID 389672, 7 pages, 2013. View at Publisher · View at Google Scholar