Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 236385, 12 pages
http://dx.doi.org/10.1155/2014/236385
Research Article

MicroRNA Dysregulation in Liver and Pancreas of CMP-Neu5Ac Hydroxylase Null Mice Disrupts Insulin/PI3K-AKT Signaling

1Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea
2Department of Cosmetology, Hanseo University, Seosan, Chungnam 356-706, Republic of Korea

Received 16 April 2014; Revised 2 June 2014; Accepted 18 July 2014; Published 28 August 2014

Academic Editor: X. Li

Copyright © 2014 Deug-Nam Kwon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Smit, W. Gaastra, J. P. Kamerling, J. F. Vliegenthart, and F. K. de Graaf, “Isolation and structural characterization of the equine erythrocyte receptor for enterotoxigenic Escherichia coli K99 fimbrial adhesin,” Infection and Immunity, vol. 46, no. 2, pp. 578–584, 1984. View at Google Scholar · View at Scopus
  2. R. Laufs and J. Heesemann, “Serologic diagnosis and prophylaxis of virus hepatitis,” Offentliche Gesundheitswesen, vol. 46, no. 11, pp. 578–581, 1984. View at Google Scholar · View at Scopus
  3. H.-H. Chou, H. Takematsu, S. Diaz et al., “A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-pan divergence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11751–11756, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Kelm, R. Schauer, and P. R. Crocker, “The Sialoadhesins—a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily,” Glycoconjugate Journal, vol. 13, no. 6, pp. 913–926, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Irie, S. Koyamat, Y. Kozutsumi, T. Kawasaki, and A. Suzuki, “The molecular basis for the absence of N-glycolylneuraminic acid in humans,” The Journal of Biological Chemistry, vol. 273, no. 25, pp. 15866–15871, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Hayakawa, Y. Satta, P. Gagneux, A. Varki, and N. Takahata, “Alu-mediated inactivation of the human CMP-N-acetylneuraminic acid hydroxylase gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11399–11404, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Varki, “Uniquely human evolution of sialic acid genetics and biology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 2, pp. 8939–8946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. N. M. Varki, E. Strobert, E. J. Dick Jr., K. Benirschke, and A. Varki, “Biomedical differences between human and nonhuman hominids: potential roles for uniquely human aspects of sialic acid biology,” Annual Review of Pathology: Mechanisms of Disease, vol. 6, pp. 365–393, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Hedlund, P. Tangvoranuntakul, H. Takematsu et al., “N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution,” Molecular and Cellular Biology, vol. 27, no. 12, pp. 4340–4346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Chandrasekharan, J. H. Yoon, Y. Xu et al., “A human-specific deletion in mouse Cmah increases disease severity in the mdx model of duchenne muscular dystrophy,” Science Translational Medicine, vol. 2, no. 42, Article ID 42ra54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Naito, H. Takematsu, S. Koyama et al., “Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation,” Molecular and Cellular Biology, vol. 27, no. 8, pp. 3008–3022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Kavaler, H. Morinaga, A. Jih et al., “Pancreatic β-cell failure in obese mice with human-like CMP-Neu5Ac hydroxylase deficiency,” The FASEB Journal, vol. 25, no. 6, pp. 1887–1893, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Chen and N. Rajewsky, “The evolution of gene regulation by transcription factors and microRNAs,” Nature Reviews Genetics, vol. 8, no. 2, pp. 93–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Li and K. V. Kowdley, “MicroRNAs in common human diseases.,” Genomics, proteomics & bioinformatics, vol. 10, no. 5, pp. 246–253, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. N. Poy, L. Eliasson, J. Krutzfeldt et al., “A pancreatic islet-specific microRNA regulates insulin secretion,” Nature, vol. 432, no. 7014, pp. 226–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. He, L. Zhu, N. Gupta, Y. Chang, and F. Fang, “Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes,” Molecular Endocrinology, vol. 21, no. 11, pp. 2785–2794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Trajkovski, J. Hausser, J. Soutschek et al., “MicroRNAs 103 and 107 regulate insulin sensitivity,” Nature, vol. 474, no. 7353, pp. 649–653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. N. Poy, J. Hausser, M. Trajkovski et al., “miR-375 maintains normal pancreatic α- and β-cell mass,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5813–5818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Y. Ling, H. S. Ou, S. D. Feng et al., “Changes in microRNA (miR) profile and effects of miR-320 in insulin-resistant 3t3-l1 adipocytes,” Clinical and Experimental Pharmacology and Physiology, vol. 36, no. 9, pp. e32–e39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Dávalos, L. Goedeke, P. Smibert et al., “miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 9232–9237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. G. L. Papadopoulos, P. Alexiou, M. Maragkakis, M. Reczko, and A. G. Hatzigeorgiou, “DIANA-mirPath: integrating human and mouse microRNAs in pathways,” Bioinformatics, vol. 25, no. 15, pp. 1991–1993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. V. R. Sopasakis, P. Liu, R. Suzuki et al., “Specific roles of the p110alpha isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation,” Cell Metabolism, vol. 11, no. 3, pp. 220–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Langhans, “Role of the liver in the control of glucose-lipid utilization and body weight,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 6, no. 4, pp. 449–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Pirola, S. Bonnafous, A. M. Johnston, C. Chaussade, F. Portis, and E. van Obberghen, “Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells,” The Journal of Biological Chemistry, vol. 278, no. 18, pp. 15641–15651, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Haruta, T. Uno, J. Kawahara et al., “A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1,” Molecular Endocrinology, vol. 14, no. 6, pp. 783–794, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. T. M. Pederson, D. L. Kramer, and C. M. Rondinone, “Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation,” Diabetes, vol. 50, no. 1, pp. 24–31, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Zick, “Insulin resistance: a phosphorylation-based uncoupling of insulin signaling,” Trends in Cell Biology, vol. 11, no. 11, pp. 437–441, 2001. View at Publisher · View at Google Scholar · View at Scopus