Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 236939, 8 pages
http://dx.doi.org/10.1155/2014/236939
Research Article

Extracts from Glioma Tissues following Cryoablation Have Proapoptosis, Antiproliferation, and Anti-Invasion Effects on Glioma Cells

Department of Neurosurgery, Neurosurgery Institute of Guangdong Province, Key Laboratory on Brain Function Rebuild and Rehabilitation of Guangdong, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China

Received 12 December 2013; Revised 14 March 2014; Accepted 21 March 2014; Published 10 April 2014

Academic Editor: Manoor Prakash Hande

Copyright © 2014 Tianzhu Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. N. Mamelak and D. B. Jacoby, “Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601),” Expert Opinion on Drug Delivery, vol. 4, no. 2, pp. 175–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Jansen, S. Yip, and D. N. Louis, “Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers,” The Lancet Neurology, vol. 9, no. 7, pp. 717–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Joosten, G. N. Muijen, T. Wobbes, and T. J. Ruers, “In Vivo destruction of tumor tissue by cryoablation can induce inhibition of secondary tumor growth: an experimental study,” Cryobiology, vol. 42, no. 1, pp. 49–58, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Ahmed, S. Ahmed, and J. Davies, “History of cryosurgery,” Journal of Endourology, vol. 20, no. 7, pp. 471–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. A. Gage and J. Baust, “Mechanisms of tissue injury in cryosurgery,” Cryobiology, vol. 37, no. 3, pp. 171–186, 1998. View at Google Scholar · View at Scopus
  6. D. Levy, A. Avallone, and J. S. Jones, “Current state of urological cryosurgery: prostate and kidney,” BJU International, vol. 105, no. 5, pp. 590–600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. G. Baust, A. A. Gage, A. T. Robilottto, and J. M. Baust, “The pathophysiology of thermoablation: optimizing cryoablation,” Current Opinion in Urology, vol. 19, no. 2, pp. 127–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. Basco, W. K. Yiu, S. W. Cheng, and B. E. Sumpio, “The effects of freezing versus supercooling on vascular cells: implications for balloon cryoplasty,” Journal of Vascular and Interventional Radiology, vol. 21, no. 6, pp. 910–915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Van Antwerp, S. J. Martin, I. M. Verma, and D. R. Green, “Inhibition of TNF-induced apoptosis by NF-κB,” Trends in Cell Biology, vol. 8, no. 3, pp. 107–111, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, “Role of reactive oxygen species (ROS) in apoptosis induction,” Apoptosis, vol. 5, no. 5, pp. 415–418, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. G. S. Smith, J. A. Voyer-Grant, and G. Harauz, “Monitoring cleaved caspase-3 activity and apoptosis of immortalized oligodendroglial cells using live-cell imaging and cleaveable fluorogenic-dye substrates following potassium-induced membrane depolarization,” Journal of Visualized Experiments, vol. 13, no. 59, Article ID e3422, pp. 1–5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. L. M. Zheng, A. Zychlinsky, C.-C. Liu, D. M. Ojcius, and J. D.-E. Young, “Extracellular APT as a trigger for apoptosis or programmed cell death,” Journal of Cell Biology, vol. 112, no. 2, pp. 279–288, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Schulze-Lohoff, C. Hugo, S. Rost et al., “Extracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X7 receptors,” American Journal of Physiology-Renal Physiology, vol. 275, no. 6, pp. F962–F971, 1998. View at Google Scholar · View at Scopus
  14. J. Chen, Y. Guo, W. Cheng et al., “High glucose induces apoptosis and suppresses proliferation of adult rat neural stem cells following in vitro ischemia,” BMC Neuroscience, vol. 14, p. 24, 2013. View at Publisher · View at Google Scholar
  15. K. B. Reddy, S. M. Nabha, and N. Atanaskova, “Role of MAP kinase in tumor progression and invasion,” Cancer and Metastasis Reviews, vol. 22, no. 4, pp. 395–403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. E. F. Wagner and Á. R. Nebreda, “Signal integration by JNK and p38 MAPK pathways in cancer development,” Nature Reviews Cancer, vol. 9, no. 8, pp. 537–549, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Wada and J. M. Penninger, “Mitogen-activated protein kinases in apoptosis regulation,” Oncogene, vol. 23, no. 16, pp. 2838–2849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Wen, Y. Duan, Y. Zou et al., “Cryoablation induces necrosis and apoptosis in lung adenocarcinoma in mice,” Technology in Cancer Research and Treatment, vol. 6, no. 6, pp. 635–640, 2007. View at Google Scholar · View at Scopus
  19. A. Hanai, W. Yang, and T. S. Ravikumar, “Induction of apoptosis in human colon carcinoma cells HT29 by sublethal cryo-injury: mediation by cytochrome C release,” International Journal of Cancer, vol. 93, no. 4, pp. 526–533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. Kerr, C. M. Winterford, and B. V. Harmon, “Apoptosis: its significance in cancer and cancer therapy,” Cancer, vol. 73, no. 8, pp. 2013–2026, 1994. View at Google Scholar · View at Scopus
  21. A. T. Robilotto, J. M. Baust, R. G. Van Buskirk, A. A. Gage, and J. G. Baust, “Temperature-dependent activation of differential apoptotic pathways during cryoablation in a human prostate cancer model,” Prostate Cancer and Prostatic Diseases, vol. 16, no. 1, pp. 41–49, 2013. View at Google Scholar
  22. J. M. Baust, D. P. Klossner, A. Robilotto et al., “Vitamin D3 cryosensitization increases prostate cancer susceptibility to cryoablation via mitochondrial-mediated apoptosis and necrosis,” BJU International, vol. 109, no. 6, pp. 949–958, 2012. View at Publisher · View at Google Scholar · View at Scopus