Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 238762, 10 pages
http://dx.doi.org/10.1155/2014/238762
Research Article

Chemical Synthesis, Characterisation, and Biocompatibility of Nanometre Scale Porous Anodic Aluminium Oxide Membranes for Use as a Cell Culture Substrate for the Vero Cell Line: A Preliminary Study

1Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia
2Animal Health Laboratories, Animal Virology, Department of Agriculture and Food, 3 Baron Hay Court, Kensington, WA 6150, Australia
3Department of Chemistry, Curtin University of Technology, Bentley, WA 6102, Australia

Received 23 April 2013; Accepted 11 November 2013; Published 21 January 2014

Academic Editor: Richard Tucker

Copyright © 2014 Gérrard Eddy Jai Poinern et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, vol. 268, no. 5216, pp. 1466–1468, 1995. View at Google Scholar · View at Scopus
  2. A. P. Li, F. Müller, A. Bimer, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics, vol. 84, no. 11, pp. 6023–6026, 1998. View at Google Scholar · View at Scopus
  3. H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Japanese Journal of Applied Physics, Part 2, vol. 35, no. 1, pp. L126–L129, 1996. View at Google Scholar · View at Scopus
  4. M. Ghorbani, F. Nasirpouri, A. Iraji zad, and A. Saedi, “On the growth sequence of highly ordered nanoporous anodic aluminium oxide,” Materials and Design, vol. 27, no. 10, pp. 983–988, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. H. Choi, P. S. Lee, W. Hwang, K. H. Lee, and H. C. Park, “Measurement of the pore sizes for anodic aluminum oxide (AAO),” Current Applied Physics, vol. 6, no. 1, pp. e125–e129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. G. E. J. Poinern, N. Ali, and D. Fawcett, “Progress in nano-engineered anodic aluminium oxide membrane development,” Materials, vol. 4, pp. 487–526, 2011. View at Publisher · View at Google Scholar
  7. S. Shingubara, “Fabrication of nanomaterials using porous alumina templates,” Journal of Nanoparticle Research, vol. 5, no. 1-2, pp. 17–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. X. J. Wu, F. Zhu, C. Mu et al., “Electrochemical synthesis and applications of oriented and hierarchically quasi-1D semiconducting nanostructures,” Coordination Chemistry Reviews, vol. 254, no. 9-10, pp. 1135–1150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sensors and Actuators B, vol. 141, no. 2, pp. 441–446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Bogue, “The fabrication and assembly of nanoelectronic devices,” Assembly Automation, vol. 30, no. 3, pp. 206–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chemistry of Materials, vol. 8, no. 8, pp. 1739–1746, 1996. View at Google Scholar · View at Scopus
  12. G. E. J. Poinern, D. Fawcett, Y. J. Ng, N. Ali, R. K. Brundavanam, and Z. T. Jiang, “Nanoengineering a biocompatible inorganic scaffold for skin wound healing,” Journal of Biomedical Nanotechnology, vol. 6, no. 5, pp. 497–510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Hoess, N. Teuscher, A. Thormann, H. Aurich, and A. Heilmann, “Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes,” Acta Biomaterialia, vol. 3, no. 1, pp. 43–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. E. J. Poinern, N. Ali, C. Berry, P. Singh, and D. Fawcett, “Biocompatibility of synthesis nano-porous anodic aluminium oxide membranes for use as a cell culture substrate for Madin-Darby Canine Kidney Cells: a preliminary study,” Journal of Tissue Science and Engineering, vol. 3, no. 119, pp. 1–7, 2012. View at Google Scholar
  15. P. Roach, D. Eglin, K. Rohde, and C. C. Perry, “Modern biomaterials: a review—bulk properties and implications of surface modifications,” Journal of Materials Science, vol. 18, no. 7, pp. 1263–1277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. K. F. Yim and K. W. Leong, “Significance of synthetic nanostructures in dictating cellular response,” Nanomedicine, vol. 1, no. 1, pp. 10–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Rappaport, “Small aspect of the growth of mammalian cells on glass surfaces,” in The Chemistry of Biosurfaces, pp. 449–489, Marcel Dekker, 1972. View at Google Scholar
  18. F. Grinnell, “Cellular adhesiveness and extracellular substrata,” in International Review of Cytology, pp. 67–145, Academic Press, New York, NY, USA, 1978. View at Google Scholar · View at Scopus
  19. E. A. Volger, “Interfacial chemistry in biomaterials science,” in Wettability, J. Berg, Ed., pp. 184–250, Marcel Dekker, New York, NY, USA, 1993. View at Google Scholar
  20. E. M. Christenson, K. S. Anseth, J. J. van den Beucken et al., “Nanobiomaterial Applications in Orthopedics,” Journal of Orthopedics Research, vol. 25, no. 1, pp. 11–22, 2007. View at Publisher · View at Google Scholar
  21. K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley, and L. Ploux, “The interaction of cells and bacteria with surfaces structured at the nanometre scale,” Acta Biomaterialia, vol. 6, no. 10, pp. 3824–3846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. J. Dalby, M. O. Riehle, H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia,” Cell Biology International, vol. 28, no. 3, pp. 229–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. T. Nguyen, K. P. Shukla, M. Moctezuma, and T. Liping, “Cellular and molecular responses of smooth muscle cells to surface nanotopography,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 8, pp. 2823–2832, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. G. E. J. Poinern, R. Shackleton, S. I. Mamun, and D. Fawcett, “Significance of novel bioinorganic anodic aluminum oxide nanoscaffolds for promoting cellular response,” Nanotechnology, Science and Applications, vol. 4, no. 1, pp. 11–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Hoess, A. Thormann, A. Friedmann, H. Aurich, and A. Heilmann, “Co-cultures of primary cells on self-supporting nanoporous alumina membranes,” Advanced Engineering Materials, vol. 12, no. 7, pp. B269–B275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Hoess, N. Teuscher, A. Thormann, H. Aurich, and A. Heilmann, “Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes,” Acta Biomaterialia, vol. 3, no. 1, pp. 43–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. H. D. Graham, C. R. Bowen, J. Taylor, and J. Robbins, “Neuronal cell biocompatibility and adhesion to modified CMOS electrodes,” Biomedical Microdevices, vol. 11, no. 5, pp. 1091–1101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. L. G. Parkinson, N. L. Giles, K. F. Adcroft, M. W. Fear, F. M. Wood, and G. E. Poinern, “The potential of nanoporous anodic aluminium oxide membranes to influence skin wound repair,” Tissue Engineering A, vol. 15, no. 12, pp. 3753–3763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. C. Popat, E. E. Leary Swan, V. Mukhatyar et al., “Influence of nanoporous alumina membranes on long-term osteoblast response,” Biomaterials, vol. 26, no. 22, pp. 4516–4522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. C. Popat, K. I. Chalvanichkul, G. L. Barnes, T. J. Latempa Jr., C. A. Grimes, and T. A. Desai, “Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces,” Journal of Biomedical Materials Research A, vol. 80, no. 4, pp. 955–964, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K. S. Napolskii, I. V. Roslyakov, A. A. Eliseev et al., “The kinetics and mechanism of long-range pore ordering in anodic films on aluminum,” Journal of Physical Chemistry C, vol. 115, no. 48, pp. 23726–23731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. W. H. Yu, G. T. Fei, X. M. Chen, F. H. Xue, and X. J. Xu, “Influence of defects on the ordering degree of nanopores made from anodic aluminum oxide,” Physics Letters A, vol. 350, no. 5-6, pp. 392–395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Whatman® Anopore, http://www.whatman.com/products/.
  34. M. R. Fisch, A. Primak, and S. Kumar, “X-ray diffraction study of Anodisc filters,” Physical Review E, vol. 65, no. 4, Article ID 046615, 7 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Schäfer, B. Borm, S. Born, C. Möhl, E. M. Eibl, and B. Hoffmann, “One step ahead: role of filopodia in adhesion formation during cell migration of keratinocytes,” Experimental Cell Research, vol. 315, no. 7, pp. 1212–1224, 2009. View at Publisher · View at Google Scholar · View at Scopus