Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 254686, 8 pages
http://dx.doi.org/10.1155/2014/254686
Research Article

Epinephrine Enhances the Response of Macrophages under LPS Stimulation

1State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
2Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China

Received 16 February 2014; Revised 8 July 2014; Accepted 29 July 2014; Published 26 August 2014

Academic Editor: Baoli Cheng

Copyright © 2014 Jianyun Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Jiang, “Posttraumatic stress and immune dissonance,” Chinese Journal of Traumatology, vol. 11, no. 4, pp. 203–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. L. B. Ware, M. D. Eisner, and K. R. Flaherty, “Clinical year in review II: sepsis, mechanical ventilation, occupational and environmental lung disease, and sleep,” Proceedings of the American Thoracic Society, vol. 6, no. 6, pp. 494–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. A. Zausig, D. Geilfus, G. Missler, B. Sinner, B. M. Graf, and W. Zink, “Direct cardiac effects of dobutamine, dopamine, epinephrine, and levosimendan in isolated septic rat hearts,” Shock, vol. 34, no. 3, pp. 269–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Póvoa and A. H. Carneiro, “Adrenergic support in septic shock: a critical review,” Hospital Practice, vol. 38, no. 1, pp. 62–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Yang, J. Zhou, H. Zhong et al., “Exogenous norepinephrine correlates with macrophage endoplasmic reticulum stress response in association with XBP-1,” The Journal of Surgical Research, vol. 168, no. 2, pp. 262–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-Y. Zhou, H.-J. Zhong, C. Yang, J. Yan, H.-Y. Wang, and J.-X. Jiang, “Corticosterone exerts immunostimulatory effects on macrophages via endoplasmic reticulum stress,” The British Journal of Surgery, vol. 97, no. 2, pp. 281–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. G. Correa, M. Maccioni, V. E. Rivero, P. Iribarren, C. E. Sotomayor, and C. M. Riera, “Cytokines and the immune-neuroendocrine network: what did we learn from infection and autoimmunity?” Cytokine and Growth Factor Reviews, vol. 18, no. 1-2, pp. 125–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. A. Kohl and C. S. Deutschman, “The inflammatory response to surgery and trauma,” Current Opinion in Critical Care, vol. 12, no. 4, pp. 325–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Zhou, D. Pavlovic, J. Willecke et al., “Activated protein C improves pial microcirculation in experimental endotoxemia in rats,” Microvascular Research, vol. 83, no. 3, pp. 276–280, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. W. J. Wiersinga, “Current insights in sepsis: from pathogenesis to new treatment targets,” Current Opinion in Critical Care, vol. 17, no. 5, pp. 480–486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Koppe, N. Suttorp, and B. Opitz, “Recognition of Streptococcus pneumoniae by the innate immune system,” Cellular Microbiology, vol. 14, no. 4, pp. 460–466, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. K. L. Engler, M. L. Rudd, J. J. Ryan, J. K. Stewart, and K. Fischer-Stenger, “Autocrine actions of macrophage-derived catecholamines on interleukin-1β,” Journal of Neuroimmunology, vol. 160, no. 1-2, pp. 87–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Miksa, P. Das, M. Zhou et al., “Pivotal role of the α2A-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis,” PLoS ONE, vol. 4, no. 5, Article ID e5504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. E. Philippakis, A. C. Lazaris, T. G. Papathomas et al., “Adrenaline attenuates the acute lung injury after intratracheal lipopolysaccharide instillation: an experimental study,” Inhalation Toxicology, vol. 20, no. 4, pp. 445–453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Biswas and E. Lopez-Collazo, “Endotoxin tolerance: new mechanisms, molecules and clinical significance,” Trends in Immunology, vol. 30, no. 10, pp. 475–487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Rossol, H. Heine, U. Meusch et al., “LPS-induced cytokine production in human monocytes and macrophages,” Critical Reviews in Immunology, vol. 31, no. 5, pp. 379–446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Singh and H. J. Girschick, “Toll-like receptors in Borrelia burgdorferi-induced inflammation,” Clinical Microbiology and Infection, vol. 12, no. 8, pp. 705–717, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. I. A. Yang, K. M. Fong, S. T. Holgate, and J. W. Holloway, “The role of Toll-like receptors and related receptors of the innate immune system in asthma,” Current Opinion in Allergy and Clinical Immunology, vol. 6, no. 1, pp. 23–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Schmalz, S. Krifka, and H. Schweikl, “Toll-like receptors, LPS, and dental monomers,” Advances in Dental Research, vol. 23, no. 3, pp. 302–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Kudrin and D. Ray, “Cunning factor: macrophage migration inhibitory factor as a redox-regulated target,” Immunology and Cell Biology, vol. 86, no. 3, pp. 232–238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. L. Young, A. Mora, A. Cerny et al., “CD14 deficiency impacts glucose homeostasis in mice through altered adrenal tone,” PLoS ONE, vol. 7, no. 1, Article ID e29688, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Ueta and S. Kinoshita, “Ocular surface inflammation mediated by innate immunity,” Eye & Contact Lens, vol. 36, no. 5, pp. 269–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Lova, G. F. Guidetti, I. Canobbio, S. Catricalà, C. Balduini, and M. Torti, “Epinephrine-mediated protein kinase C and Rap1b activation requires the co-stimulation of Gz-, Gq-, and Gi-coupled receptors,” Thrombosis and Haemostasis, vol. 105, no. 3, pp. 479–486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Andrews and K. D. Neises, “Cells, biomarkers, and post-traumatic stress disorder: evidence for peripheral involvement in a central disease,” Journal of Neurochemistry, vol. 120, no. 1, pp. 26–36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Reinhart, T. Glück, J. Ligtenberg et al., “CD14 receptor occupancy in severe sepsis: results of a phase I clinical trial with a recombinant chimeric CD14 monoclonal antibody (IC14),” Critical Care Medicine, vol. 32, no. 5, pp. 1100–1108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Genth-Zotz, S. von Haehling, A. P. Bolger et al., “The anti-CD14 antibody IC14 suppresses ex vivo endotoxin stimulated tumor necrosis factor-alpha in patients with chronic heart failure,” European Journal of Heart Failure, vol. 8, no. 4, pp. 366–372, 2006. View at Publisher · View at Google Scholar · View at Scopus