Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 267350, 13 pages
http://dx.doi.org/10.1155/2014/267350
Research Article

Lipopolysaccharide Stimulates p62-Dependent Autophagy-Like Aggregate Clearance in Hepatocytes

1Department of Surgery, University of Pittsburgh, NW607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA
2Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
3Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA

Received 7 April 2013; Revised 18 November 2013; Accepted 26 November 2013; Published 10 February 2014

Academic Editor: Hartmut Jaeschke

Copyright © 2014 Christine Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Komatsu, S. Waguri, M. Koike et al., “Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice,” Cell, vol. 131, no. 6, pp. 1149–1163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Komatsu, “Liver autophagy: physiology and pathology,” Journal of Biochemistry, vol. 152, no. 1, pp. 5–15, 2012. View at Publisher · View at Google Scholar
  3. Y. Zhang, M. J. Morgan, K. Chen, S. Choksi, and Z. G. Liu, “Induction of autophagy is essential for monocyte-macrophage differentiation,” Blood, vol. 119, no. 12, pp. 2895–2905, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. K. I. Fujita and S. M. Srinivasula, “TLR4-mediated autophagy in macrophages is a p62-dependent type of selective autophagy of aggresome-like induced structures (ALIS),” Autophagy, vol. 7, no. 5, pp. 552–554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. I. Fujita, D. Maeda, Q. Xiao, and S. M. Srinivasula, “Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 4, pp. 1427–1432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Saitoh and S. Akira, “Regulation of innate immune responses by autophagy-related proteins,” Journal of Cell Biology, vol. 189, no. 6, pp. 925–935, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Xu, C. Jagannath, X. D. Liu, A. Sharafkhaneh, K. E. Kolodziejska, and N. T. Eissa, “Toll-like receptor 4 is a sensor for autophagy associated with innate immunity,” Immunity, vol. 27, no. 1, pp. 135–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Delgado, S. Singh, S. de Haro et al., “Autophagy and pattern recognition receptors in innate immunity,” Immunological Reviews, vol. 227, no. 1, pp. 189–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Wirawan, S. Lippens, T. V. Berghe et al., “Beclin 1: a role in membrane dynamics and beyond,” Autophagy, vol. 8, no. 1, pp. 6–17, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Delgado and V. Deretic, “Toll-like receptors in control of immunological autophagy,” Cell Death and Differentiation, vol. 16, no. 7, pp. 976–983, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Johansen and T. Lamark, “Selective autophagy mediated by autophagic adapter proteins,” Autophagy, vol. 7, no. 3, pp. 279–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Into, M. Inomata, E. Takayama, and T. Takigawa, “Autophagy in regulation of Toll-like receptor signaling,” Cellular Signalling, vol. 24, no. 6, pp. 1150–1162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. B. E. Riley, S. E. Kaiser, T. A. Shaler et al., “Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection,” Journal of Cell Biology, vol. 191, no. 3, pp. 537–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Pankiv, T. H. Clausen, T. Lamark et al., “p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy,” Journal of Biological Chemistry, vol. 282, no. 33, pp. 24131–24145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Itakura and N. Mizushima, “p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding,” Journal of Cell Biology, vol. 192, no. 1, pp. 17–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Ichimura and M. Komatsu, “Pathophysiological role of autophagy: lesson from autophagy-deficient mouse models,” Experimental Animals, vol. 60, no. 4, pp. 329–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Vodovotz, S. Liu, C. McCloskey, R. Shapiro, A. Green, and T. R. Billiar, “The hepatocyte as a microbial product-responsive cell,” Journal of Endotoxin Research, vol. 7, no. 5, pp. 365–373, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Scott and T. R. Billiar, “β2-integrin-induced p38 MAPK activation is a key mediator in the CD14/TLR4/MD2-dependent uptake of lipopolysaccharide by hepatocytes,” Journal of Biological Chemistry, vol. 283, no. 43, pp. 29433–29446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Scott, S. Liu, R. A. Shapiro, Y. Vodovotz, and T. R. Billiar, “Endotoxin uptake in mouse liver is blocked by endotoxin pretreatment through a suppressor of cytokine signaling-1-dependent mechanism,” Hepatology, vol. 49, no. 5, pp. 1695–1708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Deretic, “Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors,” Current Opinion in Immunology, vol. 24, no. 1, pp. 21–31, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Deretic, “Autophagy in immunity and cell-autonomous defense against intracellular microbes,” Immunological Reviews, vol. 240, no. 1, pp. 92–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Levine, N. Mizushima, and H. W. Virgin, “Autophagy in immunity and inflammation,” Nature, vol. 469, no. 7330, pp. 323–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. S. Choi and S. W. Ryter, “Autophagy in inflammatory diseases,” International Journal of Cell Biology, vol. 2011, Article ID 732798, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. Sun, W. Gao, P. Loughran et al., “Caspase-1 activation is protective against hepatocyte cell death by up-regulating beclin 1 pritein and mitochondrial autophagy in the setting of redox stress,” Journal of Biological Chemistry, vol. 288, no. 22, pp. 15947–15958, 2013. View at Publisher · View at Google Scholar
  25. E. H. Carchman, J. Rao, P. A. Loughran, M. R. Rosengart, and B. S. Zuckerbraun, “Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice,” Hepatology, vol. 53, no. 6, pp. 2053–2062, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. P. O. Seglen, “Preparation of isolated rat liver cells,” Methods in Cell Biology, vol. 13, pp. 29–83, 1976. View at Google Scholar · View at Scopus
  27. N. Mizushima, T. Yoshimori, and B. Levine, “Methods in mammalian autophagy research,” Cell, vol. 140, no. 3, pp. 313–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Komatsu, S. Kageyama, and Y. Ichimura, “p62/SQSTM1/A170: physiology and pathology,” Pharmacological Research, vol. 66, no. 6, pp. 457–462, 2012. View at Publisher · View at Google Scholar
  29. A. Jain, T. Lamark, E. Sjøttem et al., “p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription,” Journal of Biological Chemistry, vol. 285, no. 29, pp. 22576–22591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Komatsu, H. Kurokawa, S. Waguri et al., “The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1,” Nature Cell Biology, vol. 12, no. 3, pp. 213–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Duran, J. F. Linares, A. S. Galvez et al., “The signaling adaptor p62 Is an important NF-κB mediator in tumorigenesis,” Cancer Cell, vol. 13, no. 4, pp. 343–354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Yamamoto, S. Sato, H. Hemmi et al., “Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway,” Science, vol. 301, no. 5633, pp. 640–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Rocha, R. Herance, S. Rovira, A. Hernández-Mijares, and V. M. Víctor, “Mitochondrial dysfunction and antioxidant therapy in sepsis,” Infectious Disorders, vol. 12, no. 2, pp. 161–178, 2012. View at Google Scholar · View at Scopus
  34. E. Watanabe, J. T. Muenzer, W. G. Hawkins et al., “Sepsis induces extensive autophagic vacuolization in hepatocytes: a clinical and laboratory-based study,” Laboratory Investigation, vol. 89, no. 5, pp. 549–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Balk, “Severe sepsis and septic shock: definitions, epidemiology, and clinical manifestations,” Critical Care Clinics, vol. 16, no. 2, pp. 179–192, 2000. View at Google Scholar · View at Scopus
  36. K. Taguchi, N. Fujikawa, M. Komatsu et al., “Keap1 degradation by autophagy for the maintenance of redox homeostasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 34, pp. 13561–13566, 2012. View at Publisher · View at Google Scholar
  37. W. S. Chien, Y. H. Chen, P. C. Chiang et al., “Suppression of autophagy in rat liver at late stage of polymicrobial sepsis,” Shock, vol. 35, no. 5, pp. 506–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Ueno, J. Ezaki, and E. Kominami, “Metabolic contribution of hepatic autophagic proteolysis: old wine in new bottles,” Biochimica et Biophysica Acta, vol. 1824, no. 1, pp. 51–58, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Qiu, J. Zhang, M. J. Dekker et al., “Hepatic autophagy mediates endoplasmic reticulum stress-induced degradation of misfolded apolipoprotein B,” Hepatology, vol. 53, no. 5, pp. 1515–1525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Christian, J. Sacco, and K. Adeli, “Autophagy: emerging roles in lipid homeostasis and metabolic control,” Biochimica Biophysica Acta, vol. 1831, no. 4, pp. 819–824, 2013. View at Publisher · View at Google Scholar
  41. J. Ezaki, N. Matsumoto, M. Takeda-Ezaki et al., “Liver autophagy contributes to the maintenance of blood glucose and amino acid levels,” Autophagy, vol. 7, no. 7, pp. 727–736, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. W. Lin, H. Zhang, M. Li et al., “Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice,” Journal of Hepatology, vol. 58, no. 5, pp. 993–999, 2013. View at Publisher · View at Google Scholar
  43. J. Evankovich, R. Zhang, J. S. Cardinal et al., “Calcium/calmodulin-dependent protein kinase IV limits organ damage in hepatic ischemia-reperfusion injury through induction of autophagy,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 303, no. 2, pp. G189–G198, 2012. View at Publisher · View at Google Scholar
  44. H. M. Ni, A. Bockus, N. Boggess, H. Jaeschke, and W. X. Ding, “Activation of autophagy protects against acetaminophen-induced hepatotoxicity,” Hepatology, vol. 55, no. 1, pp. 222–232, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Takamura, M. Komatsu, T. Hara et al., “Autophagy-deficient mice develop multiple liver tumors,” Genes and Development, vol. 25, no. 8, pp. 795–800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Mimura, S. Sakisaka, M. Harada, M. Sata, and K. Tanikawa, “Role of hepatocytes in direct clearance of lipopolysaccharide in rats,” Gastroenterology, vol. 109, no. 6, pp. 1969–1976, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Su and X. Wang, “p62 Stages an interplay between the ubiquitin-proteasome system and autophagy in the heart of defense against proteotoxic stress,” Trends in Cardiovascular Medicine, vol. 21, no. 8, pp. 224–228, 2011. View at Publisher · View at Google Scholar
  48. F. Randow, “How cells deploy ubiquitin and autophagy to defend their cytosol from bacterial invasion,” Autophagy, vol. 7, no. 3, pp. 304–309, 2011. View at Publisher · View at Google Scholar · View at Scopus