Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 270676, 11 pages
http://dx.doi.org/10.1155/2014/270676
Research Article

Change of Muscle Architecture following Body Weight Support Treadmill Training for Persons after Subacute Stroke: Evidence from Ultrasonography

Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China

Received 3 December 2013; Revised 30 January 2014; Accepted 14 February 2014; Published 24 March 2014

Academic Editor: Xiaoling Hu

Copyright © 2014 Peng Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. J. O'Dwyer, L. Ada, and P. D. Neilson, “Spasticity and muscle contracture following stroke,” Brain, vol. 119, no. 5, pp. 1737–1749, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Ada, C. G. Canning, and S.-L. Low, “Stroke patients have selective muscle weakness in shortened range,” Brain, vol. 126, no. 3, pp. 724–731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. T. Wade, V. A. Wood, A. Heller, J. Maggs, and R. L. Hewer, “Walking after stroke. Measurement and recovery over the first 3 months,” Scandinavian Journal of Rehabilitation Medicine, vol. 19, no. 1, pp. 25–30, 1987. View at Google Scholar
  4. S. Hesse, “Treadmill training with partial body weight support after stroke: a review,” NeuroRehabilitation, vol. 23, no. 1, pp. 55–65, 2008. View at Google Scholar · View at Scopus
  5. H. Barbeau and S. Rossignol, “Recovery of locomotion after chronic spinalization in the adult cat,” Brain Research, vol. 412, no. 1, pp. 84–95, 1987. View at Publisher · View at Google Scholar · View at Scopus
  6. K. J. McCain, F. E. Pollo, B. S. Baum, S. C. Coleman, S. Baker, and P. S. Smith, “Locomotor treadmill training with partial body-weight support before overground gait in adults with acute stroke: a pilot study,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 4, pp. 684–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. H. Peurala, O. Airaksinen, P. Huuskonen et al., “Effects of intensive therapy using gait trainer or floor walking exercises early after stroke,” Journal of Rehabilitation Medicine, vol. 41, no. 3, pp. 166–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Hesse, M. Konrad, and D. Uhlenbrock, “Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects,” Archives of Physical Medicine and Rehabilitation, vol. 80, no. 4, pp. 421–427, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Franceschini, S. Carda, M. Agosti, R. Antenucci, D. Malgrati, and C. Cisari, “Walking after stroke: what does treadmill training with body weight support add to overground gait training in patients early after stroke? A single-blind, randomized, controlled trial,” Stroke, vol. 40, no. 9, pp. 3079–3085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. T. da Cunha Jr., P. A. Lim, H. Qureshy, H. Henson, T. Monga, and E. J. Protas, “Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 9, pp. 1258–1265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. P. R. Trueblood, “Partial body weight treadmill training in persons with chronic stroke,” NeuroRehabilitation, vol. 16, no. 3, pp. 141–153, 2001. View at Google Scholar · View at Scopus
  12. S. J. Harkema, S. L. Hurley, U. K. Patel, P. S. Requejo, B. H. Dobkin, and V. R. Edgerton, “Human lumbosacral spinal cord interprets loading during stepping,” Journal of Neurophysiology, vol. 77, no. 2, pp. 797–811, 1997. View at Google Scholar · View at Scopus
  13. T. Fukunaga, Y. Kawakami, S. Kuno, K. Funato, and S. Fukashiro, “Muscle architecture and function in humans,” Journal of Biomechanics, vol. 30, no. 5, pp. 457–463, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. P. W. Hodges, L. H. M. Pengel, R. D. Herbert, and S. C. Gandevia, “Measurement of muscle contraction with ultrasound imaging,” Muscle and Nerve, vol. 27, no. 6, pp. 682–692, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. Mendis, S. J. Wilson, W. Stanton, and J. A. Hides, “Validity of real-time ultrasound imaging to measure anterior hip muscle size: a comparison with magnetic resonance imaging,” Journal of Orthopaedic and Sports Physical Therapy, vol. 40, no. 9, pp. 577–581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Fukunaga, M. Miyatani, M. Tachi, M. Kouzaki, Y. Kawakami, and H. Kanehisa, “Muscle volume is a major determinant of joint torque in humans,” Acta Physiologica Scandinavica, vol. 172, no. 4, pp. 249–255, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. C. English, L. Fisher, and K. Thoirs, “Reliability of real-time ultrasound for measuring skeletal muscle size in human limbs in vivo: a systematic review,” Clinical Rehabilitation, vol. 26, pp. 934–944, 2012. View at Publisher · View at Google Scholar
  18. Y. Kawakami, Y. Ichinose, K. Kubo, M. Ito, M. Imai, and T. Fukunaga, “Architecture of contracting human muscles and its functional significance,” Journal of Applied Biomechanics, vol. 16, no. 1, pp. 88–97, 2000. View at Google Scholar · View at Scopus
  19. L. Li, K. Y. Tong, and X. Hu, “The effect of poststroke impairments on brachialis muscle architecture as measured by ultrasound,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 2, pp. 243–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Gao, T. H. Grant, E. J. Roth, and L.-Q. Zhang, “Changes in passive mechanical properties of the gastrocnemius muscle at the muscle fascicle and joint levels in stroke survivors,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 5, pp. 819–826, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. N. Maganaris and V. Baltzopoulos, “Predictability of in vivo changes in pennation angle of human tibialis anterior muscle from rest to maximum isometric dorsiflexion,” European Journal of Applied Physiology and Occupational Physiology, vol. 79, no. 3, pp. 294–297, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Ikezoe, N. Mori, M. Nakamura, and N. Ichihashi, “Atrophy of the lower limbs in elderly women: is it related to walking ability?” European Journal of Applied Physiology, vol. 111, no. 6, pp. 989–995, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. V. Narici, T. Binzoni, E. Hiltbrand, J. Fasel, F. Terrier, and P. Cerretelli, “In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction,” Journal of Physiology, vol. 496, no. 1, pp. 287–297, 1996. View at Google Scholar · View at Scopus
  24. H. J. Hislop, Daniels and Worthingham's Muscle Testing: Techniques of Manual Examination, Elsevier Science Health Science Division, 8th edition, 2007.
  25. J. M. Thom, C. I. Morse, K. M. Birch, and M. V. Narici, “Influence of muscle architecture on the torque and power-velocity characteristics of young and elderly men,” European Journal of Applied Physiology, vol. 100, no. 5, pp. 613–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Harlaar, J. G. Becher, C. J. Snijders, and G. J. Lankhorst, “Passive stiffness characteristics of ankle plantar flexors in hemiplegia,” Clinical Biomechanics, vol. 15, no. 4, pp. 261–270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. E. M. Halar, W. C. Stolov, and B. Venkatesh, “Gastrocnemius muscle belly and tendon length in stroke patients and able-bodied persons,” Archives of Physical Medicine and Rehabilitation, vol. 59, no. 10, pp. 476–484, 1978. View at Google Scholar · View at Scopus
  28. E. Otten, “Concepts and models of functional architecture in skeletal muscle,” Exercise and Sport Sciences Reviews, vol. 16, pp. 89–137, 1988. View at Google Scholar · View at Scopus
  29. K. Manal, D. P. Roberts, and T. S. Buchanan, “Optimal pennation angle of the primary ankle plantar and dorsiflexors: variations with sex, contraction intensity, and limb,” Journal of Applied Biomechanics, vol. 22, no. 4, pp. 255–263, 2006. View at Google Scholar · View at Scopus
  30. A. J. Blazevich, N. D. Gill, R. Bronks, and R. U. Newton, “Training-specific muscle architecture adaptation after 5-wk training in athletes,” Medicine and Science in Sports and Exercise, vol. 35, no. 12, pp. 2013–2022, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Brorsson, M. Hilliges, C. Sollerman, and A. Nilsdotter, “A six-week hand exercise programme improves strength and hand function in patients with rheumatoid arthritis,” Journal of Rehabilitation Medicine, vol. 41, no. 5, pp. 338–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Dorsch, L. Ada, C. G. Canning, M. Al-Zharani, and C. Dean, “The strength of the ankle dorsiflexors has a significant contribution to walking speed in people who can walk independently after stroke: an observational study,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 6, pp. 1072–1076, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Brincks and J. F. Nielsen, “Increased power generation in impaired lower extremities correlated with changes in walking speeds in sub-acute stroke patients,” Clinical Biomechanics, vol. 27, no. 2, pp. 138–144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Pradon, N. Roche, L. Enette, and R. Zory, “Relationship between lower limb muscle strength and 6-minute walk test performance in stroke patients,” Journal of Rehabilitation Medicine, vol. 45, pp. 105–108, 2013. View at Publisher · View at Google Scholar
  35. D. A. Jones and O. M. Rutherford, “Human muscle strength training: the effects of three different regimes and the nature of the resultant changes,” Journal of Physiology, vol. 391, pp. 1–11, 1987. View at Google Scholar · View at Scopus
  36. Y. Kawakami, Y. Ichinose, and T. Fukunaga, “Architectural and functional features of human triceps surae muscles during contraction,” Journal of Applied Physiology, vol. 85, no. 2, pp. 398–404, 1998. View at Google Scholar · View at Scopus
  37. S. H. Hayes and S. R. Carroll, “Early intervention care in the acute stroke patient,” Archives of Physical Medicine and Rehabilitation, vol. 67, no. 5, pp. 319–321, 1986. View at Google Scholar · View at Scopus
  38. S. Hesse, C. Werner, T. Paul, A. Bardeleben, and J. Chaler, “Influence of walking speed on lower limb muscle activity and energy consumption during treadmill walking of hemiparetic patients,” Archives of Physical Medicine and Rehabilitation, vol. 82, no. 11, pp. 1547–1550, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Li, K. Y. Tong, X. L. Hu, L. K. Hung, and T. K. K. Koo, “Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke,” Clinical Biomechanics, vol. 24, no. 1, pp. 101–109, 2009. View at Publisher · View at Google Scholar · View at Scopus