Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 284836, 5 pages
http://dx.doi.org/10.1155/2014/284836
Review Article

Interleukin-10 Inhibits Bone Resorption: A Potential Therapeutic Strategy in Periodontitis and Other Bone Loss Diseases

1Institute and Hospital of Stomatology, Nanjing University Medical School, 30 Zhongyang Road, Nanjing, Jiangsu 210008, China
2School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiaozhong Road, Fuzhou, Fujian 350002, China
3School of Life and Environmental Science, Waurn Ponds Campus, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia

Received 13 November 2013; Revised 5 January 2014; Accepted 5 January 2014; Published 16 February 2014

Academic Editor: Yin Xiao

Copyright © 2014 Qian Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Sims and J. H. Gooi, “Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption,” Seminars in Cell and Developmental Biology, vol. 19, no. 5, pp. 444–451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Henriksen, A. V. Neutzsky-Wulff, L. F. Bonewald, and M. A. Karsdal, “Local communication on and within bone controls bone remodeling,” Bone, vol. 44, no. 6, pp. 1026–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Redlich and J. S. Smolen, “Inflammatory bone loss: pathogenesis and therapeutic intervention,” Nature Reviews Drug Discovery, vol. 11, no. 3, pp. 234–250, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. W. J. Boyle, W. S. Simonet, and D. L. Lacey, “Osteoclast differentiation and activation,” Nature, vol. 423, no. 6937, pp. 337–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. D. L. Cochran, “Inflammation and bone loss in periodontal disease,” Journal of Periodontology, vol. 79, no. 8, pp. 1569–1576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. E. Coleman, A. Lipton, G. D. Roodman et al., “Metastasis and bone loss: advancing treatment and prevention,” Cancer Treatment Reviews, vol. 36, no. 8, pp. 615–620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Karmakar, J. Kay, and E. M. Gravallese, “Bone Damage in rheumatoid arthritis: mechanistic insights and approaches to prevention,” Rheumatic Disease Clinics of North America, vol. 36, no. 2, pp. 385–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. M. Post, S. C. L. M. Cremers, T. Kerbusch, and M. Danhof, “Bone physiology, disease and treatment: towards disease system analysis in osteoporosis,” Clinical Pharmacokinetics, vol. 49, no. 2, pp. 89–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Gallagher and A. J. Sai, “Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis,” Maturitas, vol. 65, no. 4, pp. 301–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Hardy and M. S. Cooper, “Bone loss in inflammatory disorders,” Journal of Endocrinology, vol. 201, no. 3, pp. 309–320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Roux, “New treatment targets in osteoporosis,” Joint Bone Spine, vol. 77, no. 3, pp. 222–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Ehnert, J. Baur, A. Schmitt et al., “TGF-β1 as possible link between loss of bone mineral density and chronic inflammation,” PLoS ONE, vol. 5, no. 11, Article ID e14073, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Girasole, G. Passeri, R. L. Jilka, and S. C. Manolagas, “Interleukin-11: a new cytokine critical for osteoclast development,” Journal of Clinical Investigation, vol. 93, no. 4, pp. 1516–1524, 1994. View at Google Scholar · View at Scopus
  14. E. M. McCoy, H. X. Hong, H. C. Pruitt et al., “IL-11 produced by breast cancer cells augments osteoclastogenesis by sustaining the pool of osteoclast progenitor cells,” BMC Cancer, vol. 13, no. 16, pp. 1–11, 2013. View at Google Scholar
  15. R. K. McCormick, “Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility,” Alternative Medicine Review, vol. 12, no. 2, pp. 113–145, 2007. View at Google Scholar · View at Scopus
  16. T. Braun and J. Zwerina, “Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis,” Arthritis Research and Therapy, vol. 13, no. 4, article 235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Zhao and L. B. Ivashkiv, “Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors,” Arthritis Research and Therapy, vol. 13, no. 4, article 234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Zhao, Y. Kato, Y. Zhang, S. Harris, S. S. Ahuja, and L. F. Bonewald, “MLO-Y4 osteocyte-like cells support osteoclast formation and activation,” Journal of Bone and Mineral Research, vol. 17, no. 11, pp. 2068–2079, 2002. View at Google Scholar · View at Scopus
  19. T. L. Burgess, Y.-X. Qian, S. Kaufman et al., “The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts,” Journal of Cell Biology, vol. 145, no. 3, pp. 527–538, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Nakagawa, M. Kinosaki, K. Yamaguchi et al., “RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis,” Biochemical and Biophysical Research Communications, vol. 253, no. 2, pp. 395–400, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Yasuda, N. Shima, N. Nakagawa et al., “Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3597–3602, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Yasuda, N. Shima, N. Nakagawa et al., “Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro,” Endocrinology, vol. 139, no. 3, pp. 1329–1337, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Kobayashi, N. Takahashi, E. Jimi et al., “Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction,” Journal of Experimental Medicine, vol. 191, no. 2, pp. 275–285, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Udagawa, N. Takahashi, T. Akatsu et al., “Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 18, pp. 7260–7264, 1990. View at Google Scholar · View at Scopus
  25. D. F. Fiorentino, M. W. Bond, and T. R. Mosmann, “Two types of mouse T helper cell—IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones,” Journal of Experimental Medicine, vol. 170, no. 6, pp. 2081–2095, 1989. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Pestka, C. D. Krause, and D. Sarkar, “Interleukin-10 and related cytokines and receptors,” Annual Review of Immunology, vol. 22, pp. 929–979, 2004. View at Google Scholar
  27. A. O'Garra, F. J. Barrat, A. G. Castro, A. Vicari, and C. Hawrylowicz, “Strategies for use of IL-10 or its antagonists in human disease,” Immunological Reviews, vol. 223, no. 1, pp. 114–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Houri-Hoddod, W. A. Soskolne, A. Halabi, and L. Shapira, “IL-10 gene transfer attenuates P. gingivalis-induced inflammation,” Journal of Dental Research, vol. 86, no. 6, pp. 560–564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. D. M. Mosser and X. Zhang, “Interleukin-10: new perspectives on an old cytokine,” Immunological Reviews, vol. 226, no. 1, pp. 205–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Wieten, S. E. Berlo, C. B. ten Brink et al., “IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis,” PLoS ONE, vol. 4, no. 1, Article ID e4186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Marinou, J. Healy, D. Mewar et al., “Association of interleukin-6 and interleukin-10 genotypes with radiographic damage in rheumatoid arthritis is dependent on autoantibody status,” Arthritis and Rheumatism, vol. 56, no. 8, pp. 2549–2556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. F. Lee, E. Andrian, E. Rowland, and I. C. Marquez, “Immune response and alveolar bone resorption in a mouse model of Treponema denticola infection,” Infection and Immunity, vol. 77, no. 2, pp. 694–698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Al-Rasheed, H. Scheerens, D. M. Rennick, H. M. Fletcher, and D. N. Tatakis, “Accelerated alveolar bone loss in mice lacking interleukin-10,” Journal of Dental Research, vol. 82, no. 8, pp. 632–635, 2003. View at Google Scholar · View at Scopus
  34. E. E. Carmody, E. M. Schwarz, J. E. Puzas, R. N. Rosier, and R. J. O'Keefe, “Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles,” Arthritis and Rheumatism, vol. 46, no. 5, pp. 1298–1308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. H.-Y. Chen, W.-C. Chen, C.-M. Hsu, F.-J. Tsai, and C.-H. Tsai, “Tumor necrosis factor α, CYP 17, urokinase, and interleukin 10 gene polymorphisms in postmenopausal women: correlation to bone mineral density and susceptibility to osteoporosis,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 122, no. 1, pp. 73–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. L. P. Byung, K. H. In, S. L. Ho et al., “Association of interleukin 10 haplotype with low bone mineral density in Korean postmenopausal women,” Journal of Biochemistry and Molecular Biology, vol. 37, no. 6, pp. 691–699, 2004. View at Google Scholar · View at Scopus
  37. A. Gür, A. Denli, K. Nas et al., “Possible pathogenetic role of new cytokines in postmenopausal osteoporosis and changes during calcitonin plus calcium therapy,” Rheumatology International, vol. 22, no. 5, pp. 194–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. L. Cohen, A. M. Moore, and W. E. Ward, “Interleukin-10 knockout mouse: a model for studying bone metabolism during intestinal inflammation,” Inflammatory Bowel Diseases, vol. 10, no. 5, pp. 557–563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Dresner-Pollak, N. Gelb, D. Rachmilewitz, F. Karmeli, and M. Weinreb, “Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones,” Gastroenterology, vol. 127, no. 3, pp. 792–801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Claudino, T. P. Garlet, C. R. B. Cardoso et al., “Down-regulation of expression of osteoblast and osteocyte markers in periodontal tissues associated with the spontaneous alveolar bone loss of interleukin-10 knockout mice,” European Journal of Oral Sciences, vol. 118, no. 1, pp. 19–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Al-Rasheed, H. Scheerens, A. K. Srivastava, D. M. Rennick, and D. N. Tatakis, “Accelerated alveolar bone loss in mice lacking interleukin-10: late onset,” Journal of Periodontal Research, vol. 39, no. 3, pp. 194–198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. A. de Rossi, L. B. Rocha, and M. A. Rossi, “Interferon-gamma, interleukin-10, Intercellular adhesion molecule-1, and chemokine receptor 5, but not interleukin-4, attenuate the development of periapical lesions,” Journal of Endodontics, vol. 34, no. 1, pp. 31–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Sasaki, Y. Okamatsu, T. Kawai, R. Kent, M. Taubman, and P. Stashenko, “The interleukin-10 knockout mouse is highly susceptible to Porphyromonas gingivalis-induced alveolar bone loss,” Journal of Periodontal Research, vol. 39, no. 6, pp. 432–441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Zhang and Y.-T. A. Teng, “Interleukin-10 inhibits gram-negative-microbe-specific human receptor activator of NF-κB ligand-positive CD4+-Th1-cell-associated alveolar bone loss in vivo,” Infection and Immunity, vol. 74, no. 8, pp. 4927–4931, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. L. X. Xu, T. Kukita, A. Kukita, T. Otsuka, Y. Niho, and T. Iijima, “Interleukin-10 selectively inhibits osteoclastogenesis by inhibiting differentiation of osteoclast progenitors into preosteoclast-like cells in rat bone marrow culture system,” Journal of Cellular Physiology, vol. 165, no. 3, pp. 624–629, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. K. E. Evans and S. W. Fox, “Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus,” BMC Cell Biology, vol. 8, article 4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. C. Lovibond, S. J. Haque, T. J. Chambers, and S. W. Fox, “TGF-β-induced SOCS3 expression augments TNF-α-induced osteoclast formation,” Biochemical and Biophysical Research Communications, vol. 309, no. 4, pp. 762–767, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. M. H. Hong, H. Williams, C. H. Jin, and J. W. Pike, “The inhibitory effect of interleukin-10 on mouse osteoclast formation involves novel tyrosine-phosphorylated proteins,” Journal of Bone and Mineral Research, vol. 15, no. 5, pp. 911–918, 2000. View at Google Scholar · View at Scopus
  49. H.-H. Shin, J.-E. Lee, E. A. Lee, S. K. Byoung, and H.-S. Choi, “Enhanced osteoclastogenesis in 4-1BB-deficient mice caused by reduced interleukin-10,” Journal of Bone and Mineral Research, vol. 21, no. 12, pp. 1907–1912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Liu, S. Yao, and G. E. Wise, “Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle,” European Journal of Oral Sciences, vol. 114, no. 1, pp. 42–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. S. G.-K. Mohamed, E. Sugiyama, K. Shinoda et al., “Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells,” Bone, vol. 41, no. 4, pp. 592–602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Sasaki, L. Hou, A. Belani et al., “IL-10, but not IL-4, suppresses infection-stimulated bone resorption in vivo,” Journal of Immunology, vol. 165, no. 7, pp. 3626–3630, 2000. View at Google Scholar · View at Scopus
  53. P. van Vlasselaer, B. Borremans, R. Van den Heuvel, U. Van Gorp, and R. De Waal Malefyt, “Interleukin-10 inhibits the osteogenic activity of mouse bone marrow,” Blood, vol. 82, no. 8, pp. 2361–2370, 1993. View at Google Scholar · View at Scopus
  54. P. van Vlasselaer, B. Borremans, U. Van Gorp, J. R. Dasch, and R. De Waal-Malefyt, “Interleukin 10 inhibits transforming growth factor-β (TGF-β) synthesis required for osteogenic commitment of mouse bone marrow cells,” Journal of Cell Biology, vol. 124, no. 4, pp. 569–577, 1994. View at Google Scholar · View at Scopus
  55. Y. X. Luo, Y. M. Gong, and Y. C. Yu, “Interleukin-10 gene promoter polymorphisms are associated with cyclosporin A-induced gingival overgrowth in renal transplant patients,” Archives of Oral Biology, vol. 58, no. 9, pp. 1199–1207, 2013. View at Google Scholar
  56. S. Reichert, H. K. G. MacHulla, J. Klapproth et al., “The interleukin-10 promoter haplotype ATA is a putative risk factor for aggressive periodontitis,” Journal of Periodontal Research, vol. 43, no. 1, pp. 40–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Atanasovska-Stojanovska, D. Trajkov, and M. Popovska, “IL10-1082, IL10-819 and IL10-592 polymorphisms are associated with chronic periodontitis in a Macedonian populationw,” Human Immunology, vol. 73, no. 7, pp. 753–758, 2012. View at Google Scholar
  58. S. M. Jaradat, K. T. Ababneh, S. A. Jaradat et al., “Association of interleukin-10 gene promoter polymorphisms with chronic and aggressive periodontitis,” Oral Diseases, vol. 18, no. 3, pp. 271–279, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. C. M. Albuquerque, A. J. Cortinhas, F. J. Morinha et al., “Association of the IL-10 polymorphisms and periodontitis: a meta-analysis,” Molecular Biology Reports, vol. 39, no. 10, pp. 9319–9329, 2012. View at Google Scholar
  60. Q. F. Zhong, C. Ding, M. L. Wang et al., “Interleukin-10 gene polymorphisms and chronic/aggressive periodontitis susceptibility: a meta-analysis based on 14 case-control studies,” Cytokine, vol. 60, no. 1, pp. 47–54, 2012. View at Google Scholar
  61. T. Fiorini, M. L. Musskopf, R. V. Oppermann et al., “Is there a positive effect of smoking cessation on periodontal health? A systematic review,” Journal of Periodontology, vol. 85, no. 1, pp. 83–91, 2014. View at Google Scholar
  62. J. R. Gonzales, J. Michel, A. Diete et al., “Effects of smoking on the ex vivo cytokine production in periodontitis,” Journal of Periodontal Research, vol. 44, no. 1, pp. 28–34, 2009. View at Google Scholar
  63. J. L. Ebersole, M. J. Steffen, M. V. Thomas et al., “Smoking-related cotinine levels and host responses in chronic periodontitis,” Journal of Periodontal Research, 2013. View at Google Scholar
  64. N. W. D. Jansen, G. Roosendaal, M. J. J. Hooiveld et al., “Interleukin-10 protects against blood-induced joint damage,” British Journal of Haematology, vol. 142, no. 6, pp. 953–961, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. E. R. Meegeren, G. Roosendaal, K. Coeleveld et al., “A single intra-articular injection with IL-4 plus IL-10 ameliorates blood-induced cartilage degeneration in haemophilic mice,” British Journal of Haematology, vol. 160, no. 4, pp. 512–520, 2013. View at Google Scholar
  66. M. E. R. Meegeren, G. Roosendaal, N. W. Jansen et al., “IL-4 alone and in combination with IL-10 protects against blood-induced cartilage damage,” Osteoarthritis Cartilage, vol. 20, no. 7, pp. 764–772, 2012. View at Google Scholar