Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 296472, 9 pages
http://dx.doi.org/10.1155/2014/296472
Research Article

Pentachlorophenol Degradation by Janibacter sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land

1Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
2Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopôle Borj-Cédria, B.P. 273, 8020 Soliman, Tunisia
3Université de Manouba, Institut Supérieur de Biotechnologie de Sidi Thabet, LR11ES31 Laboratoire de Biotechnologie et Valorization des Bio-Geo Resources, Biotechpole de Sidi Thabet, 2020 Ariana, Tunisia

Received 1 May 2014; Accepted 17 August 2014; Published 17 September 2014

Academic Editor: George Tsiamis

Copyright © 2014 Amel Khessairi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Vallecillo, P. A. Garcia-Encina, and M. Peña, “Anaerobic biodegradability and toxicity of chlorophenols,” Water Science and Technology, vol. 40, no. 8, pp. 161–168, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Fetzner and F. Lingens, “Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications,” Microbiological Reviews, vol. 58, no. 4, pp. 641–685, 1994. View at Google Scholar · View at Scopus
  3. C. M. Kao, C. T. Chai, J. K. Liu, T. Y. Yeh, K. F. Chen, and S. C. Chen, “Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant,” Water Research, vol. 38, no. 3, pp. 663–672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D.-S. Shen, X.-W. Liu, and H.-J. Feng, “Effect of easily degradable substrate on anaerobic degradation of pentachlorophenol in an upflow anaerobic sludge blanket (UASB) reactor,” Journal of Hazardous Materials, vol. 119, no. 1–3, pp. 239–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Sai, K. S. Kang, A. Hirose, R. Hasegawa, J. E. Trosko, and T. Inoue, “Inhibition of apoptosis by pentachlorophenol in v-myc-transfected rat liver epithelial cells: relation to down-regulation of gap junctional intercellular communication,” Cancer Letters, vol. 173, no. 2, pp. 163–174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. EPA, “Final determination and indent to cancel and deny applications for registrations of pesticide products containing pentachlorophenol (including but not limited to its salts and esters) for non-wood uses,” US Environmental Protection Agency. Federal Register, vol. 52, pp. 2282–2293, 1987. View at Google Scholar
  7. S. D. Copley, “Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach,” Trends in Biochemical Sciences, vol. 25, no. 6, pp. 261–265, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Errampalli, J. T. Trevors, H. Lee et al., “Bioremediation: a perspective,” Journal of Soil Contamination, vol. 6, no. 3, pp. 207–218, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Wittmann, A. P. Zeng, and W. D. Deckwer, “Physiological characterization and cultivation strategies of the pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1,” Journal of Industrial Microbiology and Biotechnology, vol. 21, no. 6, pp. 315–321, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. I. S. Thakur, R. Sharma, S. Shukla, and A. H. Ahmed, “Enumeration and enrichment of pentachlorophenol degrading bacterial of pulp and paper miller in the chemostat,” in Proceedings of the AMI Conference, vol. 159, pp. 25–27, Jaipur, India, November 2000.
  11. J. H. A. Apajalahti, P. Karpanoja, and M. S. Salkinoja-Salonen, “Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralizing actinomycete,” International Journal of Systematic Bacteriology, vol. 36, no. 2, pp. 246–251, 1986. View at Publisher · View at Google Scholar · View at Scopus
  12. J. F. Gonzalez and W. S. Hu, “Effect of glutamate on the degradation of pentachlorophenol by Flavobacterium sp,” Applied Microbiology and Biotechnology, vol. 35, no. 1, pp. 100–110, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. R. I. Dams, G. I. Paton, and K. Killham, “Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723,” Chemosphere, vol. 68, no. 5, pp. 864–870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C.-F. Yang, C.-M. Lee, and C.-C. Wang, “Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica,” Chemosphere, vol. 62, no. 5, pp. 709–714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Singh, B. B. Singh, R. Chandra, D. K. Patel, and V. Rai, “Synergistic biodegradation of pentachlorophenol by Bacillus cereus (DQ002384), Serratia marcescens (AY927692) and Serratia marcescens (DQ002385),” World Journal of Microbiology and Biotechnology, vol. 25, no. 10, pp. 1821–1828, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. K. Karn, S. K. Chakrabarty, and M. S. Reddy, “Pentachlorophenol degradation by Pseudomonas stutzeri CL7 in the secondary sludge of pulp and paper mill,” Journal of Environmental Sciences, vol. 22, no. 10, pp. 1608–1612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Sharma, I. S. Thakur, and P. Dureja, “Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site,” Biodegradation, vol. 20, no. 5, pp. 643–650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Kamekura, “Diversity of extremely halophilic bacteria,” Extremophiles, vol. 2, no. 3, pp. 289–295, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Margesin and F. Schinner, “Potential of halotolerant and halophilic microorganisms for biotechnology,” Extremophiles, vol. 5, no. 2, pp. 73–83, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. W. D. Grant, R. T. Gemmell, and T. J. McGenity, “Halophiles,” in Extremophiles: Microbial Life in Extreme Environments, K. Horikoshi and W. D. Grant, Eds., pp. 93–132, Wiley-Liss, New York, NY, USA, 1998. View at Google Scholar
  21. C. K. Okoro, R. Brown, A. L. Jones et al., “Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile,” Antonie van Leeuwenhoek, vol. 95, no. 2, pp. 121–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. U. Edgehill, “Pentachlorophenol removal from slightly acidic mineral salts, commercial sand, and clay soil by recovered Arthrobacter strain ATCC 33790,” Applied Microbiology and Biotechnology, vol. 41, no. 1, pp. 142–148, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. S. K. Karn, S. K. Chakrabarti, and M. S. Reddy, “Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill,” Biodegradation, vol. 22, no. 1, pp. 63–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Martin, P. Schumann, F. A. Rainey, B. Schuetze, and I. Groth, “Janibacter limosus gen. nov., sp. nov., a new actinomycete with meso- diaminopimelic acid in the cell wall,” International Journal of Systematic Bacteriology, vol. 47, no. 2, pp. 529–534, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. J.-H. Yoon, K.-C. Lee, S.-S. Kang, Y.-H. Kho, K.-H. Kang, and Y.-H. Park, “Janibacter terrae sp. nov., a bacterium isolated from soil around a wastewater treatment plant,” International Journal of Systematic and Evolutionary Microbiology, vol. 50, no. 5, pp. 1821–1827, 2000. View at Google Scholar · View at Scopus
  26. J.-H. Yoon, H. B. Lee, S.-H. Yeo, and J.-E. Choi, “Janibacter melonis sp. nov., isolated from abnormally spoiled oriental melon in Korea,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 6, pp. 1975–1980, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Kageyama, Y. Takahashi, M. Yasumoto-Hirose, H. Kasai, Y. Shizuri, and S. Omura, “Janibacter corallicola sp. nov., isolated from coral in Palau,” Journal of General and Applied Microbiology, vol. 53, no. 3, pp. 185–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Kämpfer, O. Terenius, J. M. Lindh, and I. Faye, “Janibacter anophelis sp. nov., isolated from the midgut of Anopheles arabiensis,” International Journal of Systematic and Evolutionary Microbiology, vol. 56, no. 2, pp. 389–392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Sierra, J. L. Valera, M. L. Marina, and F. Laborda, “Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.),” Chemosphere, vol. 53, no. 6, pp. 609–618, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Iwai, A. Yamazoe, R. Takahashi, F. Kurisu, and O. Yagi, “Degradation of monochlorinated dibeno -p-Dioxins by Janibacter sp. strain YA isolated from river sediment,” Current Microbiology, vol. 51, no. 5, pp. 353–358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Jin, T. Zhu, X. Xu, and Y. Xu, “Biodegradation of dibenzofuran by Janibacter terrae strain XJ-1,” Current Microbiology, vol. 53, no. 1, pp. 30–36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Yamazoe, O. Yagi, and H. Oyaizu, “Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1,” Applied Microbiology and Biotechnology, vol. 65, no. 2, pp. 211–218, 2004. View at Google Scholar · View at Scopus
  33. A. Yamazoe, O. Yagi, and H. Oyaizu, “Biotransformation of fluorene, diphenyl ether, dibenzo-p-dioxin and carbazole by Janibacter sp,” Biotechnology Letters, vol. 26, no. 6, pp. 479–486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. G.-Y. Zhang, J.-Y. Ling, H.-B. Sun, J. Luo, Y.-Y. Fan, and Z.-J. Cui, “Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11,” Journal of Hazardous Materials, vol. 172, no. 2-3, pp. 580–586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. A. Edwards, R. G. Luthy, and Z. Liu, “Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions,” Envirenmental Science and Technology, vol. 25, no. 1, pp. 127–133, 1991. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Rösch, A. Mergel, and H. Bothe, “Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3818–3829, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Wilson, “Preparation of genomic DNA from bacteria,” in Current Protocols in Molecular Biology, F. M. Ausubel, R. Brent, R. E. Kingston et al., Eds., pp. 241–245, 1987. View at Google Scholar
  38. D. Daffonchio, S. Borin, G. Frova, P. L. Manachini, and C. Sorlini, “PCR fingerprinting of whole genomes: the spacers between the 16s and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis,” International Journal of Systematic Bacteriology, vol. 48, no. 1, pp. 107–116, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees.,” Molecular biology and evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  42. I. S. Thakur, “Structural and functional characterization of a stable, 4-chlorosalicylic-acid-degrading, bacterial community in a chemostat,” World Journal of Microbiology and Biotechnology, vol. 11, no. 6, pp. 643–645, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Premalatha and G. S. Rajakumar, “Pentachlorophenol degradation by Pseudomonas aeruginosa,” World Journal of Microbiology and Biotechnology, vol. 10, no. 3, pp. 334–337, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Tripathi and S. K. Garg, “Studies on selection of efficient bacterial strain simultaneously tolerant to hexavalent chromium and pentachlorophenol isolated from treated tannery effluent,” Research Journal of Microbiology, vol. 5, no. 8, pp. 707–716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Singh, R. Chandra, D. K. Patel, and V. Rai, “Isolation and characterization of novel Serratia marcescens (AY927692) for pentachlorophenol degradation from pulp and paper mill waste,” World Journal of Microbiology and Biotechnology, vol. 23, no. 12, pp. 1747–1754, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Cai and L. Xun, “Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723,” Journal of Bacteriology, vol. 184, no. 17, pp. 4672–4680, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. E. A. Wolski, S. E. Murialdo, and J. F. Gonzalez, “Effect of pH and inoculum size on pentachlorophenol degradation by Pseudomonas sp,” Water SA, vol. 32, no. 1, pp. 93–98, 2006. View at Google Scholar · View at Scopus
  48. C. Barbeau, L. Deschênes, D. Karamanev, Y. Comeau, and R. Samson, “Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil,” Applied Microbiology and Biotechnology, vol. 48, no. 6, pp. 745–752, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. C.-F. Yang, C.-M. Lee, and C.-C. Wang, “Degradation of chlorophenols using pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica in a batch reactor,” Current Microbiology, vol. 51, no. 3, pp. 156–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. R. L. Crawford and W. W. Mohn, “Microbiological removal of pentachlorophenol from soil using a Flavobacterium,” Enzyme and Microbial Technology, vol. 7, no. 12, pp. 617–620, 1985. View at Publisher · View at Google Scholar · View at Scopus
  51. J. T. Trevors, “Effect of temperature on the degradation of pentachlorophenol by Pseudomonas species,” Chemosphere, vol. 11, no. 4, pp. 471–475, 1982. View at Publisher · View at Google Scholar · View at Scopus
  52. M. A. Providenti, H. Lee, and J. T. Trevors, “Selected factors limiting the microbial degradation of recalcitrant compounds,” Journal of Industrial Microbiology, vol. 12, no. 6, pp. 379–395, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. M. D. Webb, G. Ewbank, J. Perkins, and A. J. McCarthy, “Metabolism of pentachlorophenol by Saccharomonospora viridis strains isolated from mushroom compost,” Soil Biology and Biochemistry, vol. 33, no. 14, pp. 1903–1914, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Chandra, A. Ghosh, R. K. Jain, and S. Singh, “Isolation and characterization of two potential pentachlorophenol degrading aerobic bacteria from pulp paper effluent sludge,” The Journal of General and Applied Microbiology, vol. 52, no. 2, pp. 125–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. C. M. Kao, J. K. Liu, Y. L. Chen, C. T. Chai, and S. C. Chen, “Factors affecting the biodegradation of PCP by Pseudomonas mendocina NSYSU,” Journal of Hazardous Materials, vol. 124, no. 1–3, pp. 68–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. K. V. Gayathri and N. Vasudevan, “Enrichment of phenol degrading moderately halophilic bacterial consortium from saline environment,” Journal of Bioremediation & Biodegradation, vol. 2011, article 104, 2010. View at Publisher · View at Google Scholar
  57. D. H. Yeh, K. D. Pennell, and S. G. Pavlostathis, “Toxicity and biodegradability screening of nonionic surfactants using sediment-derived methanogenic consortia,” Water Science and Technology, vol. 38, no. 7, pp. 55–62, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Volkering, A. M. Breure, J. G. van Andel, and W. H. Rulkens, “Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 1699–1705, 1995. View at Google Scholar · View at Scopus
  59. W. H. Noordman, J. H. J. Wachter, G. J. de Boer, and D. B. Janssen, “The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability,” Journal of Biotechnology, vol. 94, no. 2, pp. 195–212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. T. L. Cort, M.-S. Song, and A. R. Bielefeldt, “Nonionic surfactant effects on pentachlorophenol biodegradation,” Water Research, vol. 36, no. 5, pp. 1253–1261, 2002. View at Publisher · View at Google Scholar · View at Scopus