Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 304250, 8 pages
http://dx.doi.org/10.1155/2014/304250
Clinical Study

The Role of Vitamin D Deficiency and Vitamin D Receptor Genotypes on the Degree of Collateralization in Patients with Suspected Coronary Artery Disease

1Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin, and Bone Research Laboratory, Boston University Medical Center, Boston, MA 02118, USA
2Tehran University of Medical Sciences, Tehran 1417653911, Iran
3Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 1417653911, Iran
4Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1417653911, Iran

Received 26 April 2013; Revised 20 January 2014; Accepted 25 January 2014; Published 6 March 2014

Academic Editor: M. Ilyas Kamboh

Copyright © 2014 Arash Hossein-Nezhad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Holick, “Vitamin D: important for prevention of osteoporosis, cardiovascular heart disease, type 1 diabetes, autoimmune diseases, and some cancers,” Southern Medical Journal, vol. 98, no. 10, pp. 1024–1027, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Kendrick, G. Targher, G. Smits, and M. Chonchol, “25-Hydroxyvitamin D deficiency is independently associated with cardiovascular disease in the Third National Health and Nutrition Examination Survey,” Atherosclerosis, vol. 205, no. 1, pp. 255–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hossein-Nezhad, A. Spira, and M. F. Holick, “Influence of vitamin d status and vitamin d3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial,” PLoS ONE, vol. 8, article 20, 2013. View at Google Scholar
  4. J. L. Anderson, H. T. May, B. D. Horne et al., “Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population,” The American Journal of Cardiology, vol. 106, no. 7, pp. 963–968, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Skaaby, L. L. Husemoen, C. Pisinger et al., “Vitamin D status and changes in cardiovascular risk factors: a prospective study of a general population,” Cardiology, vol. 123, pp. 62–70, 2012. View at Google Scholar
  6. L. T. Wasson, D. Shimbo, M. R. Rubin, J. A. Shaffer, J. E. Schwartz, and K. W. Davidson, “Is vitamin D deficiency a risk factor for ischemic heart disease in patients with established cardiovascular disease? 10-year follow-up of the Nova Scotia Health Survey,” International Journal of Cardiology, vol. 148, no. 3, pp. 387–389, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. E. D. Michos and M. L. Melamed, “Vitamin D and cardiovascular disease risk,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 1, pp. 7–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. E. Judd and V. Tangpricha, “Vitamin D deficiency and risk for cardiovascular disease,” The American Journal of the Medical Sciences, vol. 338, no. 1, pp. 40–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Lee, J. H. O'Keefe, D. Bell, D. D. Hensrud, and M. F. Holick, “Vitamin D deficiency. An important, common, and easily treatable cardiovascular risk factor?” Journal of the American College of Cardiology, vol. 52, no. 24, pp. 1949–1956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Dobnig, S. Pilz, H. Scharnagl et al., “Independent association of low serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels with all-cause and cardiovascular mortality,” Archives of Internal Medicine, vol. 168, no. 12, pp. 1340–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. E. Judd and V. Tangpricha, “Vitamin D therapy and cardiovascular health,” Current Hypertension Reports, vol. 13, no. 3, pp. 187–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. N. Bhupathiraju and K. L. Tucker, “Coronary heart disease prevention: nutrients, foods, and dietary patterns,” Clinica Chimica Acta, vol. 412, no. 17-18, pp. 1493–1514, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Syal, A. Kapoor, E. Bhatia et al., “Vitamin D deficiency, coronary artery disease, and endothelial dysfunction: observations from a coronary angiographic study in Indian patients,” Journal of Invasive Cardiology, vol. 24, pp. 385–389, 2012. View at Google Scholar
  14. P. Anagnostis, V. G. Athyros, F. Adamidou, M. Florentin, and A. Karagiannis, “Vitamin D and cardiovascular disease: a novel agent for reducing cardiovascular risk?” Current Vascular Pharmacology, vol. 8, no. 5, pp. 720–730, 2010. View at Google Scholar · View at Scopus
  15. H. Taskapan, M. Wei, and D. G. Oreopoulos, “25(OH) vitamin D3 in patients with chronic kidney disease and those on dialysis: rediscovering its importance,” International Urology and Nephrology, vol. 38, no. 2, pp. 323–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Lips, “Vitamin D physiology,” Progress in Biophysics and Molecular Biology, vol. 92, pp. 4–8, 2006. View at Google Scholar
  17. B. Klotz, B. Mentrup, M. Regensburger et al., “1,25-dihydroxyvitamin D3 treatment delays cellular aging in human mesenchymal stem cells while maintaining their multipotent capacity,” PLoS ONE, vol. 7, no. 1, Article ID e29959, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. J. N. Artaza, F. Sirad, M. G. Ferrini, and K. C. Norris, “1,25(OH)2vitamin D3 inhibits cell proliferation by promoting cell cycle arrest without inducing apoptosis and modifies cell morphology of mesenchymal multipotent cells,” Journal of Steroid Biochemistry and Molecular Biology, vol. 119, no. 1-2, pp. 73–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Furigay and N. Swamy, “Anti-endothelial properties of 1,25-dihydroxy-3-epi-vitamin D3, a natural metabolite of calcitriol,” Journal of Steroid Biochemistry and Molecular Biology, vol. 89-90, pp. 427–431, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. K. A. Nibbelink, D. X. Tishkoff, S. D. Hershey, A. Rahman, and R. U. Simpson, “1,25(OH)2-vitamin D3 actions on cell proliferation, size, gene expression, and receptor localization, in the HL-1 cardiac myocyte,” Journal of Steroid Biochemistry and Molecular Biology, vol. 103, no. 3–5, pp. 533–537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Tarcin, D. G. Yavuz, B. Ozben et al., “Effect of vitamin D deficiency and replacement on endothelial function in asymptomatic subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 10, pp. 4023–4030, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. D. E. Prosser and G. Jones, “Enzymes involved in the activation and inactivation of vitamin D,” Trends in Biochemical Sciences, vol. 29, no. 12, pp. 664–673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Bouillon, G. Carmeliet, L. Verlinden et al., “Vitamin D and human health: lessons from vitamin D receptor null mice,” Endocrine Reviews, vol. 29, no. 6, pp. 726–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Hossein-Nezhad, G. Ahangari, H. Behzadi, Z. Maghbooli, and B. Larijani, “Vitamin D receptor gene polymorphism may predict response to vitamin D intake and bone turnover,” Daru, vol. 17, no. 1, pp. 13–19, 2009. View at Google Scholar · View at Scopus
  25. A. Hossein-Nezhad, G. Ahangari, and B. Larijani, “Evaluating of VDR gene variation and its interaction with immune regulatory molecules in osteoporosis,” Iranian Journal of Public Health, vol. 38, no. 2, pp. 27–36, 2009. View at Google Scholar · View at Scopus
  26. G. Kerr Whitfield, L. S. Remus, P. W. Jurutka et al., “Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene,” Molecular and Cellular Endocrinology, vol. 177, no. 1-2, pp. 145–159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Hossein-nezhad, K. Mirzaei, P. Shabani et al., “Association of VDR gene polymorphism with insulin resistance in diabetic patient's running title: VDR and insulin resistance,” Iranian Journal of Diabetes and Lipid Disorders, vol. 8, no. 1, pp. 143–150, 2009. View at Google Scholar · View at Scopus
  28. K. Mirzaei, S. Ahmadi, A. Hossein-Nezhad, and F. Mokhtari, “Potential role of OPG/RANKL system and FokI genotypes in pathogenesis and clinical manifestations in multiple sclerosis,” Minerva Medica, vol. 103, pp. 313–321, 2012. View at Google Scholar
  29. A. Hossein-Nezhad, F. N. Varzaneh, and K. Mirzaei, “Association of the FokI polymorphism in the vitamin D receptor gene with vertebral fracture in Iranian postmenopapausal women,” Endocrine Practice, vol. 17, no. 5, pp. 826–827, 2011. View at Google Scholar · View at Scopus
  30. K. P. Rentrop, M. Cohen, H. Blanke, and R. A. Phillips, “Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects,” Journal of the American College of Cardiology, vol. 5, no. 3, pp. 587–592, 1985. View at Google Scholar · View at Scopus
  31. R. P. Heaney and M. F. Holick, “Why the IOM recommendations for vitamin D are deficient,” Journal of Bone and Mineral Research, vol. 26, no. 3, pp. 455–457, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. L. T. Wasson, D. Shimbo, M. R. Rubin, J. A. Shaffer, J. E. Schwartz, and K. W. Davidson, “Is vitamin D deficiency a risk factor for ischemic heart disease in patients with established cardiovascular disease? 10-year follow-up of the Nova Scotia Health Survey,” International Journal of Cardiology, vol. 148, no. 3, pp. 387–389, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Hossein-nezhad and M. F. Holick, “Vitamin D for health: a global perspective,” Mayo Clinic Proceeding, vol. 88, no. 7, pp. 720–755, 2013. View at Google Scholar
  34. M. F. Holick, “Vitamin D and sunlight: strategies for cancer prevention and other health benefits,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 5, pp. 1548–1554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Zittermann and R. Koerfer, “Vitamin D in the prevention and treatment of coronary heart disease,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 6, pp. 752–757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. S. Dusso, A. J. Brown, and E. Slatopolsky, “Vitamin D,” The American Journal of Physiology—Renal Physiology, vol. 289, no. 1, pp. F8–F28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Chung, G. Han, M. Seshadri et al., “Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo,” Cancer Research, vol. 69, no. 3, pp. 967–975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Kinnaird, E. Stabile, S. Zbinden, M.-S. Burnett, and S. E. Epstein, “Cardiovascular risk factors impair native collateral development and may impair efficacy of therapeutic interventions,” Cardiovascular Research, vol. 78, no. 2, pp. 257–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Spinetti, N. Kraenkel, C. Emanueli, and P. Madeddu, “Diabetes and vessel wall remodelling: from mechanistic insights to regenerative therapies,” Cardiovascular Research, vol. 78, no. 2, pp. 265–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. D. De Groot, G. Pasterkamp, and I. E. Hoefer, “Cardiovascular risk factors and collateral artery formation,” European Journal of Clinical Investigation, vol. 39, no. 12, pp. 1036–1047, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. G. Pittas, J. Lau, F. B. Hu, and B. Dawson-Hughes, “Review: the role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 6, pp. 2017–2029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Zhou, F. Lu, K. Cao, D. Xu, D. Goltzman, and D. Miao, “Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1α-hydroxylase knockout mice,” Kidney International, vol. 74, no. 2, pp. 170–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Hyppönen and C. Power, “Vitamin D status and glucose homeostasis in the 1958 British birth cohort the role of obesity,” Diabetes Care, vol. 29, no. 10, pp. 2244–2246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. A. G. Need, P. D. O'Loughlin, M. Horowitz, and B. E. C. Nordin, “Relationship between fasting serum glucose, age, body mass index and serum 25 hydroxyvitamin D in postmenopausal women,” Clinical Endocrinology, vol. 62, no. 6, pp. 738–741, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. E. S. Ford, U. A. Ajani, L. C. McGuire, and S. Liu, “Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults,” Diabetes Care, vol. 28, no. 5, pp. 1228–1230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. X. M. Pan, D. R. Li, L. Yang et al., “No association between vitamin D receptor polymorphisms and coronary artery disease in a Chinese population,” DNA Cell Biology, vol. 28, no. 10, pp. 521–525, 2009. View at Google Scholar
  47. M. C. Rebsamen, J. Sun, A. W. Norman, and J. K. Liao, “1α,25-dihydroxyvitamin D3 induces vascular smooth muscle cell migration via activation of phosphatidylinositol 3-kinase,” Circulation Research, vol. 91, no. 1, pp. 17–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Arai, K.-I. Miyamoto, Y. Taketani et al., “A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women,” Journal of Bone and Mineral Research, vol. 12, no. 6, pp. 915–921, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. P. W. Jurutka, L. S. Remus, G. K. Whitfield et al., “The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB,” Molecular Endocrinology, vol. 14, no. 3, pp. 401–420, 2000. View at Publisher · View at Google Scholar · View at Scopus