Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 307519, 18 pages
http://dx.doi.org/10.1155/2014/307519
Review Article

Recent Advances in Application of Biosensors in Tissue Engineering

1Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
2Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
3Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju 380-702, Republic of Korea
5Tissue Engineering Centre, Faculty of Medicine, National University of Malaysia (Universiti Kebangsaan Malaysia), 56000 Cheras, Kuala Lumpur, Malaysia
6Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
7Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
8Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon

Received 28 February 2014; Accepted 28 May 2014; Published 6 August 2014

Academic Editor: Min-Hsien Wu

Copyright © 2014 Anwarul Hasan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Nurunnabi, K. J. Cho, J. S. Choi, K. M. Huh, and Y. Lee, “Targeted near-IR QDs-loaded micelles for cancer therapy and imaging,” Biomaterials, vol. 31, no. 20, pp. 5436–5444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. D. Malhotra, R. Singhal, A. Chaubey, S. K. Sharma, and A. Kumar, “Recent trends in biosensors,” Current Applied Physics, vol. 5, no. 2, pp. 92–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hasan, A. Memic, N. Annabi et al., “Electrospun scaffolds for tissue engineering of vascular grafts,” Acta Biomaterialia, vol. 10, pp. 11–25, 2014. View at Publisher · View at Google Scholar
  4. A. Hasan, K. Ragaert, W. Swieszkowski et al., “Biomechanical properties of native and tissue engineered heart valve constructs,” Journal of Biomechanics, vol. 47, no. 9, 2013. View at Publisher · View at Google Scholar
  5. Z. Khatun, M. Nurunnabi, K. J. Cho, and Y. Lee, “Oral delivery of near-infrared quantum dot loaded micelles for noninvasive biomedical imaging,” ACS Applied Materials and Interfaces, vol. 4, no. 8, pp. 3880–3887, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Khatun, M. Nurunnabi, K. J. Cho, and Y. Lee, “Imaging of the GI tract by QDs loaded heparin-deoxycholic acid (DOCA) nanoparticles,” Carbohydrate Polymers, vol. 90, no. 4, pp. 1461–1468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. S. Kim, K. J. Cho, T. H. Tran et al., “In vivo NIR imaging with CdTe/CdSe quantum dots entrapped in PLGA nanospheres,” Journal of Colloid and Interface Science, vol. 353, no. 2, pp. 363–371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Malima, S. Siavoshi, T. Musacchio et al., “Highly sensitive microscale in vivo sensor enabled by electrophoretic assembly of nanoparticles for multiple biomarker detection,” Lab on a Chip, vol. 12, no. 22, pp. 4748–4754, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science, vol. 312, no. 5771, pp. 217–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Tomasulo, I. Yildiz, S. L. Kaanumalle, and F. M. Raymo, “pH-sensitive ligand for luminescent quantum dots,” Langmuir, vol. 22, no. 24, pp. 10284–10290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-Y. Xie, J.-G. Liang, Z.-L. Zhang, Y. Liu, Z.-K. He, and D.-W. Pang, “Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 60, no. 11, pp. 2527–2530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotechnology, vol. 6, no. 4, pp. 203–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. F-A. Kauffer, C. Merlin, L. Balan, and R. Schneider, “Incidence of the core composition on the stability, the ROS production and the toxicity of CdSe quantum dots,” Journal of Hazardous Materials, vol. 268, pp. 246–255, 2014. View at Google Scholar
  15. H. Mattoussi, J. M. Mauro, E. R. Goldman et al., “Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein,” Journal of the American Chemical Society, vol. 122, no. 49, pp. 12142–12150, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Yeh, Y. Ho, and T. Wang, “Quantum dot-mediated biosensing assays for specific nucleic acid detection,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 1, no. 2, pp. 115–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Cosnier, “Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review,” Biosensors and Bioelectronics, vol. 14, no. 5, pp. 443–456, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. H. T. Tien, S. H. Wurster, and A. L. Ottova, “Electrochemistry of supported bilayer lipid membranes: background and techniques for biosensor development,” Bioelectrochemistry and Bioenergetics, vol. 42, no. 1, pp. 77–94, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. S. F. D'Souza, “Immobilization and stabilization of biomaterials for biosensor applications,” Applied Biochemistry and Biotechnology, vol. 96, no. 1–3, pp. 225–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Riedel, “Microbial biosensors based on oxygen electrodes,” in Enzyme and Microbial Biosensors, A. Mulchandani and K. Rogers, Eds., pp. 199–223, Humana Press, 1998. View at Google Scholar
  21. J. L. Marty, D. Olive, and Y. Asano, “Measurement of BOD: correlation between 5-day BOD and commercial BOD biosensor values,” Environmental Technology, vol. 18, no. 3, pp. 333–337, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Rizzuto, P. Pinton, M. Brini, A. Chiesa, L. Filippin, and T. Pozzan, “Mitochondria as biosensors of calcium microdomains,” Cell Calcium, vol. 26, no. 5, pp. 193–199, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Kress-Rogers and C. J. B. Brimelow, Instrumentation and Sensors for the Food Industry, Woodhead, Cambridge, UK, 2nd edition, 2001.
  24. A. Turner, I. Karube, and G. S. Wilson, Biosensors: Fundamentals and Applications, Oxford University Press, Oxford, UK, 1987.
  25. M. Campàs, R. Carpentier, and R. Rouillon, “Plant tissue-and photosynthesis-based biosensors,” Biotechnology Advances, vol. 26, no. 4, pp. 370–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. E. Hufton, P. T. Moerkerk, E. V. Meulemans, A. de Bruïne, J. Arends, and H. R. Hoogenboom, “Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands,” Journal of Immunological Methods, vol. 231, no. 1-2, pp. 39–51, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. D. Marazuela and M. C. Moreno-Bondi, “Fiber-optic biosensors—an overview,” Analytical and Bioanalytical Chemistry, vol. 372, no. 5-6, pp. 664–682, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Nakamura and I. Karube, “Current research activity in biosensors,” Analytical and Bioanalytical Chemistry, vol. 377, no. 3, pp. 446–468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Lazcka, F. J. D. Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1205–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. H. J. Watts, C. R. Lowe, and D. V. Pollard-Knight, “Optical biosensor for monitoring microbial cells,” Analytical Chemistry, vol. 66, no. 15, pp. 2465–2470, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. I. R. D. C. José and P. C. Ralph, Biosensors. Encyclopedia of Agricultural, Food, and Biological Engineering, Taylor & Francis, Oxford, UK, 2nd edition, 2010.
  32. E. Kress-Rogers, Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment, CRC Press, 1996.
  33. A. P. F. Turner, “Biosensors: sense and sensibility,” Chemical Society Reviews, vol. 42, no. 8, pp. 3184–3196, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Wheeldon, A. Farhadi, A. G. Bick, E. Jabbari, and A. Khademhosseini, “Nanoscale tissue engineering: spatial control over cell-materials interactions,” Nanotechnology, vol. 22, no. 21, Article ID 212001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Wang, Q. Chen, and X. Zeng, “Potentiometric biosensor for studying hydroquinone cytotoxicity in vitro,” Biosensors and Bioelectronics, vol. 25, no. 6, pp. 1356–1362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. E.-H. Yoo and S.-Y. Lee, “Glucose biosensors: an overview of use in clinical practice,” Sensors, vol. 10, no. 5, pp. 4558–4576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Borgmann, A. Schulte, S. Neugebauer, and W. Schuhmann, “Amperometric biosensors,” in Advances in Electrochemical Science and Engineering, pp. 1–83, Wiley-VCH, New York, NY, USA, 2011. View at Google Scholar
  38. V. Scognamiglio, A. Scirè, V. Aurilia et al., “A strategic fluorescence labeling of D-galactose/D-glucose-binding protein from Escherichia coli helps to shed light on the protein structural stability and dynamics,” Journal of Proteome Research, vol. 6, no. 11, pp. 4119–4126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. D'Auria, A. Ausili, A. Marabotti et al., “Binding of glucose to the D-galactose/D-glucose-binding protein from Escherichia coli restores the native protein secondary structure and thermostability that are lost upon calcium depletion,” The Journal of Biochemistry, vol. 139, no. 2, pp. 213–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. J. Jeffery, “Engineering periplasmic ligand binding proteins as glucose nanosensors,” Nano Reviews, vol. 2, 2011. View at Google Scholar
  41. D. B. Sacks, M. Arnold, G. L. Bakris et al., “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care, vol. 34, no. 6, pp. e61–e99, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Applied Optics, vol. 37, no. 16, pp. 3553–3557, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” Journal of Biomedical Optics, vol. 15, no. 1, Article ID 017002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. H. M. Heise, R. Marbach, and F. A. Gries, “Noninvasive blood glucose sensors based on near-infrared spectroscopy,” Artificial Organs, vol. 18, no. 6, pp. 439–447, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Maruo, M. Tsurugi, M. Tamura, and Y. Ozaki, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Applied Spectroscopy, vol. 57, no. 10, pp. 1236–1244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Vranić, A. Fomichova, N. Gretz et al., “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” The Analyst, vol. 136, no. 6, pp. 1192–1198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care, vol. 22, no. 12, pp. 2026–2032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care, vol. 25, no. 12, pp. 2268–2275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technology and Therapeutics, vol. 2, no. 1, pp. 17–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, “Glucose sensing in human epidermis using mid-infrared photoacoustic detection,” Biomedical Optics Express, vol. 3, no. 4, pp. 667–680, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” Journal of Biomedical Optics, vol. 5, no. 1, pp. 5–16, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Research and Clinical Practice, vol. 77, no. 1, pp. 16–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, Taylor & Francis, 2008.
  54. C. Pouchert, Aldrich Library of Infrared Spectra, Aldrich Chemical Co., 1981.
  55. H. A. MacKenzie, H. S. Ashton, S. Spiers et al., “Advances in photoacoustic noninvasive glucose testing,” Clinical Chemistry, vol. 45, no. 9, pp. 1587–1595, 1999. View at Google Scholar · View at Scopus
  56. W. B. Martin, S. Mirov, and R. Venugopalan, “Using two discrete frequencies within the middle infrared to quantitatively determine glucose in serum,” Journal of Biomedical Optics, vol. 7, no. 4, pp. 613–617, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Applied Spectroscopy, vol. 59, no. 7, pp. 881–884, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomedical Optics Express, vol. 3, no. 11, pp. 3012–3021, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 84, no. 4, Article ID 041917, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. K. K. Jain, “Applications of nanobiotechnology in clinical diagnostics,” Clinical Chemistry, vol. 53, no. 11, pp. 2002–2009, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Scognamiglio, “Nanotechnology in glucose monitoring: advances and challenges in the last 10 years,” Biosensors and Bioelectronics, vol. 47, pp. 12–25, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. A. S. Rad, A. Mirabi, E. Binaian, and H. Tayebi, “A review on glucose and hydrogen peroxide biosensor based on modified electrode included silver nanoparticles,” International Journal of Electrochemical Science, vol. 6, no. 8, pp. 3671–3683, 2011. View at Google Scholar · View at Scopus
  63. T. Gu and Y. Hasebe, “DNA-Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide,” Biosensors and Bioelectronics, vol. 21, no. 11, pp. 2121–2128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Chen, R. Yuan, Y. Chai, L. Zhang, N. Wang, and X. Li, “Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles,” Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1268–1274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Du, J. Ding, J. Cai, and A. Zhang, “Determination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan,” Colloids and Surfaces B: Biointerfaces, vol. 58, no. 2, pp. 145–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. X. Sun, J. T. Zhang, S. W. Huang, and S. F. Wang, “Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film,” Sensors and Actuators, B: Chemical, vol. 124, no. 2, pp. 494–500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Li and X. Lin, “Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode,” Biosensors and Bioelectronics, vol. 22, no. 12, pp. 2898–2905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. Q. Liu, X. Lu, J. Li, X. Yao, and J. Li, “Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes,” Biosensors and Bioelectronics, vol. 22, no. 12, pp. 3203–3209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Wang and E. Wang, “A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode,” Electrochemistry Communications, vol. 6, no. 2, pp. 225–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Yang, Y. Yang, G. Shen, and R. Yu, “Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode,” Analytical Biochemistry, vol. 334, no. 1, pp. 127–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Zhang, M. Feng, and H. Tachikawa, “Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes,” Biosensors and Bioelectronics, vol. 22, no. 12, pp. 3036–3041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Xu, C. Hu, and S. Hu, “A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in Hb-Ag sol films,” Sensors and Actuators, B: Chemical, vol. 130, no. 2, pp. 816–822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Chen, L. Zhang, J. Gao, W. Wu, Y. Hu, and X. Jiang, “Chemiluminescent nanomicelles for imaging hydrogen peroxide and self-therapy in photodynamic therapy,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 679492, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. Q. Chang, L. Zhu, G. Jiang, and H. Tang, “Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme-immobilized magnetite/silica nanoparticles,” Analytical and Bioanalytical Chemistry, vol. 395, no. 7, pp. 2377–2385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Kim, Y. K. Lee, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside live cells,” Analytical Chemistry, vol. 82, no. 6, pp. 2165–2169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. C. Shiang, C. C. Huang, and H. T. Chang, “Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose,” Chemical Communications, no. 23, pp. 3437–3439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. E. Llaudet, S. Hatz, M. Droniou, and N. Dale, “Microelectrode biosensor for real-time measurement of ATP in biological tissue,” Analytical Chemistry, vol. 77, no. 10, pp. 3267–3273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Wang, C. Y. Huang, and W. C. Lin, “Optical ATP biosensor for extracellular ATP measurement,” Biosensors and Bioelectronics, vol. 43, no. 1, pp. 355–361, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. M. J. Leo Bours, P. C. Dagnelie, A. L. Giuliani, A. Wesselius, and F. di Virgilio, “P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation,” Frontiers in Bioscience, vol. 3, no. 4, pp. 1443–1456, 2011. View at Google Scholar · View at Scopus
  80. G. Burnstock, “Pathophysiology and therapeutic potential of purinergic signaling,” Pharmacological Reviews, vol. 58, no. 1, pp. 58–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Corriden and P. A. Insel, “Basal release of ATP: an autocrine-paracrine mechanism for cell regulation,” Science Signaling, vol. 3, no. 104, article re1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Wall, R. Eason, and N. Dale, “Biosensor measurement of purine release from cerebellar cultures and slices,” Purinergic Signalling, vol. 6, no. 3, pp. 339–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. S. W. Schneider, M. E. Egan, B. P. Jena, W. B. Guggino, H. Oberleithner, and J. P. Geibel, “Continuous detection of extracellular ATP on living cells by using atomic force microscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 21, pp. 12180–12185, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Hayashi, A. Hazama, A. K. Dutta, R. Z. Sabirov, and Y. Okada, “Detecting ATP release by a biosensor method,” Science's STKE, vol. 2004, no. 258, article pl14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. L. Xie, X. Yan, and Y. Du, “An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules,” Biosensors and Bioelectronics, vol. 53, pp. 58–64, 2014. View at Publisher · View at Google Scholar
  86. I. Stamenkovic, “Matrix metalloproteinases in tumor invasion and metastasis,” Seminars in Cancer Biology, vol. 10, no. 6, pp. 415–433, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Egeblad and Z. Werb, “New functions for the matrix metalloproteinases in cancer progression,” Nature Reviews Cancer, vol. 2, no. 3, pp. 161–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Cupp-Enyard, “Sigma's non-specific protease activity assay: casein as a substrate,” Journal of Visualized Experiments, no. 19, article no. e899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Hu and S. Liu, “Responsive polymers for detection and sensing applications: current status and future developments,” Macromolecules, vol. 43, no. 20, pp. 8315–8330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Hu, G. Zhang, and S. Liu, “Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels,” Chemical Society Reviews, vol. 41, no. 18, pp. 5933–5949, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. Z. Ge and S. Liu, “Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance,” Chemical Society Reviews, vol. 42, no. 17, pp. 7289–7325, 2013. View at Publisher · View at Google Scholar · View at Scopus
  92. S. B. Lowe, J. A. G. Dick, B. E. Cohen, and M. M. Stevens, “Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates,” ACS Nano, vol. 6, no. 1, pp. 851–857, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. M. J. Sailor and J. R. Link, ““Smart dust”: nanostructured devices in a grain of sand,” Chemical Communications, no. 11, pp. 1375–1383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. M. M. Orosco, C. Pacholski, and M. J. Sailor, “Real-time monitoring of enzyme activity in a mesoporous silicon double layer,” Nature Nanotechnology, vol. 4, no. 4, pp. 255–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. E. T. W. Bampton, C. G. Goemans, D. Niranjan, N. Mizushima, and A. M. Tolkovsky, “The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes,” Autophagy, vol. 1, no. 1, pp. 23–36, 2005. View at Google Scholar · View at Scopus
  96. R. I. Morimoto, “Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging,” Genes and Development, vol. 22, no. 11, pp. 1427–1438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. P. A. Serra, Biosensors for Health, Environment and Biosecurity, InTech, Rijeka, Croatia, 2011.
  98. Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosensors and Bioelectronics, vol. 56, pp. 359–367, 2014. View at Google Scholar
  99. Z. Altintas, S. S. Kallempudi, U. Sezerman, and Y. Gurbuz, “A novel magnetic particle-modified electrochemical sensor for immunosensor applications,” Sensors and Actuators, B: Chemical, vol. 174, pp. 187–194, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Ladd, H. Lu, A. D. Taylor, V. Goodell, M. L. Disis, and S. Jiang, “Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor,” Colloids and Surfaces B: Biointerfaces, vol. 70, no. 1, pp. 1–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. S. S. Kallempudi, Z. Altintas, J. H. Niazi, and Y. Gurbuz, “A new microfluidics system with a hand-operated, on-chip actuator for immunosensor applications,” Sensors and Actuators, B: Chemical, vol. 163, no. 1, pp. 194–201, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Ilyas, W. Asghar, P. B. Allen, H. Duhon, A. D. Ellington, and S. M. Iqbal, “Electrical detection of cancer biomarker using aptamers with nanogap break-junctions,” Nanotechnology, vol. 23, no. 27, Article ID 275502, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Morris, Fluorescent Biosensors for Cancer Cell Imaging and Diagnostics, Taylor & Francis, 2012.
  104. M. C. Morris, “Fluorescent biosensors—probing protein kinase function in cancer and drug discovery,” Biochimica et Biophysica Acta—Proteins and Proteomics, vol. 1834, no. 7, pp. 1387–1395, 2013. View at Publisher · View at Google Scholar · View at Scopus
  105. V. Ntziachristos, “Fluorescence molecular imaging,” Annual Review of Biomedical Engineering, vol. 8, pp. 1–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Brognard and T. Hunter, “Protein kinase signaling networks in cancer,” Current Opinion in Genetics and Development, vol. 21, no. 1, pp. 4–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Lapenna and A. Giordano, “Cell cycle kinases as therapeutic targets for cancer,” Nature Reviews Drug Discovery, vol. 8, no. 7, pp. 547–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Malumbres, “Physiological relevance of cell cycle kinases,” Physiological Reviews, vol. 91, no. 3, pp. 973–1007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. N. Nakamura, A. Shigematsu, and T. Matsunaga, “Electrochemical detection of viable bacteria in urine and antibiotic selection,” Biosensors and Bioelectronics, vol. 6, no. 7, pp. 575–580, 1991. View at Publisher · View at Google Scholar · View at Scopus
  110. J. L. Brooks, B. Mirhabibollahi, and R. G. Kroll, “Experimental enzyme-linked amperometric immunosensors for the detection of salmonellas in foods,” The Journal of Applied Bacteriology, vol. 73, no. 3, pp. 189–196, 1992. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Plomer, G. G. Guilbault, and B. Hock, “Development of a piezoelectric immunosensor for the detection of enterobacteria,” Enzyme and Microbial Technology, vol. 14, no. 3, pp. 230–235, 1992. View at Publisher · View at Google Scholar · View at Scopus
  112. W. E. Lee, H. G. Thompson, J. G. Hall, R. E. Fulton, and J. P. Wong, “Rapid immunofiltration assay of Newcastle disease virus using a silicon sensor,” Journal of Immunological Methods, vol. 166, no. 1, pp. 123–131, 1993. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Y. Yeo, J. S. Choi, B. K. Lee et al., “Electrochemical endotoxin sensors based on TLR4/MD-2 complexes immobilized on gold electrodes,” Biosensors and Bioelectronics, vol. 28, no. 1, pp. 139–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensors and Actuators, B: Chemical, vol. 125, no. 2, pp. 688–703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. G. Priano, D. Pallarola, and F. Battaglini, “Endotoxin detection in a competitive electrochemical assay: synthesis of a suitable endotoxin conjugate,” Analytical Biochemistry, vol. 362, no. 1, pp. 108–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. X. L. Xiong, S. M. Wang, Y. Zhang, and L. C. Chen, “Detection of endotoxin concentration using piezoelectric based biosensor system,” Applied Mechanics and Materials, vol. 195-196, pp. 874–878, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. L. Yang and R. Bashir, “Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria,” Biotechnology Advances, vol. 26, no. 2, pp. 135–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. F. Ricci, G. Volpe, L. Micheli, and G. Palleschi, “A review on novel developments and applications of immunosensors in food analysis,” Analytica Chimica Acta, vol. 605, no. 2, pp. 111–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. D. Atias, Y. Liebes, V. Chalifa-Caspi et al., “Chemiluminescent optical fiber immunosensor for the detection of IgM antibody to dengue virus in humans,” Sensors and Actuators B: Chemical, vol. 140, no. 1, pp. 206–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. R. L. Rich and D. G. Myszka, “Spying on HIV with SPR,” Trends in Microbiology, vol. 11, no. 3, pp. 124–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. E. Katz and I. Willner, “Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors,” Electroanalysis, vol. 15, no. 11, pp. 913–947, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Griffin, A. K. Singh, D. Senapati et al., “Sequence-specific HCV RNA quantification using the size-dependent nonlinear optical properties of gold nanoparticles,” Small, vol. 5, no. 7, pp. 839–845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. P. Skládal, C. dos Santos Riccardi, H. Yamanaka, and P. I. da Costa, “Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus,” Journal of Virological Methods, vol. 117, no. 2, pp. 145–151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. M. F. Frasco and N. Chaniotakis, “Semiconductor quantum dots in chemical sensors and biosensors,” Sensors, vol. 9, no. 9, pp. 7266–7286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. I. L. Medintz, K. E. Sapsford, A. R. Clapp et al., “Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots,” Journal of Physical Chemistry B, vol. 110, no. 22, pp. 10683–10690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Cossins, “The cancer-test kid,” Scientist, vol. 27, no. 4, pp. 23–24, 2013. View at Google Scholar · View at Scopus
  127. A. Tucker, “Jack Andraka, the teen prodigy of pancreatic cancer,” Smithsonian Magazine, 2012. View at Google Scholar
  128. J. C. Claussen, A. D. Franklin, A. U. Haque, D. Marshall Porterfield, and T. S. Fisher, “Electrochemical biosensor of nanocube-augmented carbon nanotube networks,” ACS Nano, vol. 3, no. 1, pp. 37–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. J. Wang, J. Dai, and T. Yarlagadda, “Carbon nanotube-conducting-polymer composite nanowires,” Langmuir, vol. 21, no. 1, pp. 9–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. K. Kim, J. Cheng, Q. Liu, X. Y. Wu, and Y. Sun, “Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor,” Journal of Biomedical Materials Research A, vol. 92, no. 1, pp. 103–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. K. Kim, J. Cheng, Q. Liu, X. Y. Wu, and Y. Sun, “MEMS capacitive force sensors for micro-scale compression testing of biomaterials,” in Proceedings of the 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS '08), pp. 888–891, Tucson, Ariz, USA, January 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. S. Mao, K. Yu, J. Chang, D. A. Steeber, L. E. Ocola, and J. Chen, “Direct growth of vertically-oriented graphene for field-effect transistor biosensor,” Scientific Reports, vol. 3, article 1696, 2013. View at Publisher · View at Google Scholar · View at Scopus
  133. E. Timurdogan, B. E. Alaca, I. H. Kavakli, and H. Urey, “MEMS biosensor for detection of Hepatitis A and C viruses in serum,” Biosensors and Bioelectronics, vol. 28, no. 1, pp. 189–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, no. 5385, pp. 2013–2016, 1998. View at Publisher · View at Google Scholar · View at Scopus
  135. H. Ceylan Koydemir, H. Külah, C. Özgen, A. Alp, and G. Hasçelik, “MEMS biosensors for detection of methicillin resistant Staphylococcus aureus,” Biosensors and Bioelectronics, vol. 29, no. 1, pp. 1–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. C. Ruan, W. Shi, H. Jiang et al., “One-pot preparation of glucose biosensor based on polydopamine-graphene composite film modified enzyme electrode,” Sensors and Actuators B: Chemical, vol. 177, pp. 826–832, 2013. View at Publisher · View at Google Scholar · View at Scopus
  137. F. Xi, L. Liu, Q. Wu, and X. Lin, “One-step construction of biosensor based on chitosan-ionic liquid-horseradish peroxidase biocomposite formed by electrodeposition,” Biosensors and Bioelectronics, vol. 24, no. 1, pp. 29–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. K. Yang, J. Wan, S. Zhang, Y. Zhang, S. Lee, and Z. Liu, “In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice,” ACS Nano, vol. 5, no. 1, pp. 516–522, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, “Recent advances in graphene-based biosensors,” Biosensors and Bioelectronics, vol. 26, no. 12, pp. 4637–4648, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis, vol. 22, no. 10, pp. 1027–1036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Nurunnabi, Z. Khatun, G. R. Reeck, D. Y. Lee, and Y. K. Lee, “Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging,” Chemical Communications, vol. 49, no. 44, pp. 5079–5081, 2013. View at Publisher · View at Google Scholar · View at Scopus
  142. J. Peng, W. Gao, B. K. Gupta et al., “Graphene quantum dots derived from carbon fibers,” Nano Letters, vol. 12, no. 2, pp. 844–849, 2012. View at Publisher · View at Google Scholar · View at Scopus
  143. X. Yan, X. Cui, B. Li, and L. Li, “Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Letters, vol. 10, no. 5, pp. 1869–1873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. L. Gao, H. Zhang, and H. Cui, “A general strategy to prepare homogeneous and reagentless GO/lucigenin & enzyme biosensors for detection of small biomolecules,” Biosensors and Bioelectronics, vol. 57, pp. 65–70, 2014. View at Google Scholar
  145. M. Nurunnabi, Z. Khatun, K. M. Huh et al., “In vivo biodistribution and toxicology of carboxylated graphene quantum dots,” ACS Nano, vol. 7, no. 8, pp. 6858–6867, 2013. View at Publisher · View at Google Scholar · View at Scopus
  146. M. Nurunnabi, Z. Khatun, M. Nafiujjaman, D. Lee, and Y. Lee, “Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging,” ACS Applied Materials and Interfaces, vol. 5, no. 16, pp. 8246–8253, 2013. View at Publisher · View at Google Scholar · View at Scopus
  147. H. Sun, L. Wu, W. Wei, and X. Qu, “Recent advances in graphene quantum dots for sensing,” Materials Today, vol. 16, no. 11, pp. 433–442, 2013. View at Publisher · View at Google Scholar
  148. D. Wang, L. Wang, X. Dong, Z. Shi, and J. Jin, “Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection,” Carbon, vol. 50, no. 6, pp. 2147–2154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  149. Y. Liu, D. Yu, C. Zeng, Z. Miao, and L. Dai, “Biocompatible graphene oxide-based glucose biosensors,” Langmuir, vol. 26, no. 9, pp. 6158–6160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. Z. Wang, X. Zhou, J. Zhang, F. Boey, and H. Zhang, “Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase,” The Journal of Physical Chemistry C, vol. 113, no. 32, pp. 14071–14075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. P. Wu, Q. Shao, Y. Hu et al., “Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection,” Electrochimica Acta, vol. 55, no. 28, pp. 8606–8614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. S. Alwarappan, C. Liu, A. Kumar, and C. Li, “Enzyme-doped graphene nanosheets for enhanced glucose biosensing,” Journal of Physical Chemistry C, vol. 114, no. 30, pp. 12920–12924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosensors and Bioelectronics, vol. 43, no. 1, pp. 131–136, 2013. View at Publisher · View at Google Scholar · View at Scopus
  154. H. Yin, Y. Zhou, Q. Ma, S. Ai, Q. Chen, and L. Zhu, “Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination,” Talanta, vol. 82, no. 4, pp. 1193–1199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. V. K. Gupta, N. Atar, M. L. Yola et al., “A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application,” Journal of Colloid and Interface Science, vol. 406, pp. 231–237, 2013. View at Publisher · View at Google Scholar · View at Scopus
  156. H. Wu, J. Wang, X. Kang et al., “Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film,” Talanta, vol. 80, no. 1, pp. 403–406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosensors and Bioelectronics, vol. 25, no. 4, pp. 901–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. M. H. Yang, B. G. Choi, H. Park, W. H. Hong, S. Y. Lee, and T. J. Park, “Development of a glucose biosensor using advanced electrode modified by nanohybrid composing chemically modified graphene and ionic liquid,” Electroanalysis, vol. 22, no. 11, pp. 1223–1228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. J. Singh, P. Khanra, T. Kuila et al., “Preparation of sulfonated poly(ether-ether-ketone) functionalized ternary graphene/AuNPs/chitosan nanocomposite for efficient glucose biosensor,” Process Biochemistry, vol. 48, pp. 1724–1735, 2013. View at Publisher · View at Google Scholar · View at Scopus
  160. M. B. Gholivand and M. Khodadadian, “Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode,” Biosensors and Bioelectronics, vol. 53, pp. 472–478, 2014. View at Publisher · View at Google Scholar
  161. R. S. Dey and C. R. Raj, “Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material,” The Journal of Physical Chemistry C, vol. 114, no. 49, pp. 21427–21433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. H. Xin, C. Zhang, D. Wang et al., “Tissue-engineered allograft intervertebral disc transplantation for the treatment of degenerative disc disease: experimental study in a beagle model,” Tissue Engineering A, vol. 19, no. 1-2, pp. 143–151, 2013. View at Publisher · View at Google Scholar · View at Scopus
  163. K. Zhou, Y. Zhu, X. Yang, J. Luo, C. Li, and S. Luan, “A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites,” Electrochimica Acta, vol. 55, no. 9, pp. 3055–3060, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. L. Li, Z. Du, S. Liu et al., “A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite,” Talanta, vol. 82, no. 5, pp. 1637–1641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. Y. Wang, Y. Li, L. Tang, J. Lu, and J. Li, “Application of graphene-modified electrode for selective detection of dopamine,” Electrochemistry Communications, vol. 11, no. 4, pp. 889–892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. X. Liu, L. Xie, and H. Li, “Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol-gel hybrid membranes for determination of dopamine and uric acid,” Journal of Electroanalytical Chemistry, vol. 682, pp. 158–163, 2012. View at Publisher · View at Google Scholar · View at Scopus
  167. L. Zhong, S. Gan, X. Fu et al., “Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H2O2 biosensor,” Electrochimica Acta, vol. 89, pp. 222–228, 2013. View at Publisher · View at Google Scholar · View at Scopus
  168. S. Hou, M. L. Kasner, S. Su, K. Patel, and R. Cuellari, “Highly sensitive and selective dopamine biosensor fabricated with silanized graphene,” The Journal of Physical Chemistry C, vol. 114, no. 35, pp. 14915–14921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. J. Zhu, X. Chen, and W. Yang, “A high performance electrochemical sensor for NADH based on graphite nanosheet modified electrode,” Sensors and Actuators, B: Chemical, vol. 150, no. 2, pp. 564–568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. M. L. Yola, T. Eren, and N. Atar, “A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide,” Electrochimica Acta, vol. 125, pp. 38–47, 2014. View at Google Scholar
  171. V. K. Gupta, M. L. Yola, M. S. Qureshi, A. O. Solak, N. Atar, and Z. Üstündağ, “A novel impedimetric biosensor based on graphene oxide/gold nanoplatform for detection of DNA arrays,” Sensors and Actuators B: Chemical, vol. 188, pp. 1201–1211, 2013. View at Google Scholar
  172. X. Han, X. Fang, A. Shi, J. Wang, and Y. Zhang, “An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform,” Analytical Biochemistry, vol. 443, no. 2, pp. 117–123, 2013. View at Publisher · View at Google Scholar
  173. K.-J. Huang, Y.-J. Liu, H.-B. Wang, and Y.-Y. Wang, “A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@graphene composite,” Electrochimica Acta, vol. 118, pp. 130–137, 2014. View at Google Scholar
  174. H. Chen and R. E. Nordon, “Application of microfluidics to study stem cell dynamics,” in Emerging Trends in Cell and Gene Therapy, pp. 435–470, 2013. View at Google Scholar
  175. A. Paul, A. Hasan, L. Rodes, M. Sangaralingam, and S. Prakash, “Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges,” Advanced Drug Delivery Reviews, vol. 71, pp. 115–130, 2014. View at Google Scholar
  176. S. Kumar, S. Kumar, M. A. Ali et al., “Microfluidic-integrated biosensors: prospects for point-of-care diagnostics,” Biotechnology Journal, vol. 8, no. 11, pp. 1267–1279, 2013. View at Publisher · View at Google Scholar
  177. C. A. Holland and F. L. Kiechle, “Point-of-care molecular diagnostic systems—past, present and future,” Current Opinion in Microbiology, vol. 8, no. 5, pp. 504–509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  178. A. Weltin, K. Slotwinski, J. Kieninger et al., “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab on a Chip, vol. 14, no. 1, pp. 138–146, 2014. View at Publisher · View at Google Scholar
  179. N. Hu, C. Wu, D. Ha, T. Wang, Q. Liu, and P. Wang, “A novel microphysiometer based on high sensitivity LAPS and microfluidic system for cellular metabolism study and rapid drug screening,” Biosensors and Bioelectronics, vol. 40, no. 1, pp. 167–173, 2013. View at Publisher · View at Google Scholar · View at Scopus
  180. C.-W. Huang and G.-B. Lee, “A microfluidic system for automatic cell culture,” Journal of Micromechanics and Microengineering, vol. 17, no. 7, article 008, pp. 1266–1274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  181. S. C. C. Shih, I. Barbulovic-Nad, X. Yang, R. Fobel, and A. R. Wheeler, “Digital microfluidics with impedance sensing for integrated cell culture and analysis,” Biosensors and Bioelectronics, vol. 42, no. 1, pp. 314–320, 2013. View at Publisher · View at Google Scholar · View at Scopus
  182. K. F. Lei, M. H. Wu, C. W. Hsu, and Y. D. Chen, “Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip,” Biosensors and Bioelectronics, vol. 51, pp. 16–21, 2014. View at Publisher · View at Google Scholar · View at Scopus
  183. T. A. Nguyen, T. I. Yin, D. Reyes, and G. A. Urban, “Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes,” Analytical Chemistry, vol. 85, no. 22, pp. 11068–11076, 2013. View at Publisher · View at Google Scholar
  184. S. Choi, M. Goryll, L. Y. M. Sin, P. K. Wong, and J. Chae, “Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins,” Microfluidics and Nanofluidics, vol. 10, no. 2, pp. 231–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  185. J. Melin and S. R. Quake, “Microfluidic large-scale integration: the evolution of design rules for biological automation,” Annual Review of Biophysics and Biomolecular Structure, vol. 36, pp. 213–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  186. W. Lawi, C. Wiita, S. T. Snyder et al., “A microfluidic cartridge system for multiplexed clinical analysis,” Journal of the Association for Laboratory Automation, vol. 14, no. 6, pp. 407–412, 2009. View at Publisher · View at Google Scholar · View at Scopus