Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 308316, 8 pages
http://dx.doi.org/10.1155/2014/308316
Review Article

Prophylaxis of Contrast-Induced Nephrotoxicity

Division of Nephrology, Internal Medicine I, University of Ulm, Albert-Einstein Allee 23, 89081 Ulm, Germany

Received 19 November 2013; Revised 18 February 2014; Accepted 5 March 2014; Published 10 April 2014

Academic Editor: Michele Andreucci

Copyright © 2014 Ulla Ludwig and Frieder Keller. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Katzberg and C. Haller, “Contrast-induced nephrotoxicity: clinical landscape,” Kidney International, vol. 69, pp. S3–S7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Nash, A. Hafeez, and S. Hou, “Hospital-acquired renal insufficiency,” The American Journal of Kidney Diseases, vol. 39, no. 5, pp. 930–936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Mehran and E. Nikolsky, “Contrast-induced nephropathy: definition, epidemiology, and patients at risk,” Kidney International, vol. 69, pp. S11–S15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. C. Lasser, S. G. Lyon, and C. C. Berry, “Reports on contrast media reactions: analysis of data from reports to the U.S. Food and Drug Administration,” Radiology, vol. 203, no. 3, pp. 605–610, 1997. View at Google Scholar · View at Scopus
  5. K. J. Berg, “Nephrotoxicity related to contrast media,” Scandinavian Journal of Urology and Nephrology, vol. 34, no. 5, pp. 317–322, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Lameire, J. A. Kellum, and KDIGO AKI Guideline Work Group, “Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (Part 2),” Critical Care, vol. 17, article 205, 2013. View at Publisher · View at Google Scholar
  7. T. Pucelikova, G. Dangas, and R. Mehran, “Contrast-induced nephropathy,” Catheterization and Cardiovascular Interventions, vol. 71, no. 1, pp. 62–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Pannu, N. Wiebe, and M. Tonelli, “Prophylaxis strategies for contrast-induced nephropathy,” Journal of the American Medical Association, vol. 295, no. 23, pp. 2765–2779, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. W. Katzberg and R. Lamba, “Contrast-induced nephropathy after intravenous administration: fact or fiction?” Radiologic Clinics of North America, vol. 47, no. 5, pp. 789–800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Kim, R. H. Cha, J. P. Lee et al., “Incidence and outcomes of contrast-induced nephropathy after computed tomography in patients with CKD: a quality improvement report,” The American Journal of Kidney Diseases, vol. 55, no. 6, pp. 1018–1025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. P. Karlsberg, S. Y. Dohad, and R. Sheng, “Contrast mediuminduced acute kidney injury: comparison of intravenous and intraarterial administration of iodinated contrast medium,” Journal of Vascular and Interventional Radiology, vol. 22, no. 8, pp. 1159–1165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. W. K. Laskey, C. Jenkins, F. Selzer et al., “Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention,” Journal of the American College of Cardiology, vol. 50, no. 7, pp. 584–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Tan, Y. Liu, Y. L. Zhou et al., “Contrast medium volume to creatinine clearance ratio: a predictor of contrast-induced nephropathy in the first 72 hours following percutaneous coronary intervention,” Catheterization and Cardiovascular Interventions, vol. 79, no. 1, pp. 70–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Zhang, B. Lu, X. Sheng, and N. Jin, “Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis,” The American Journal of Kidney Diseases, vol. 58, no. 3, pp. 356–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Valette, B. Sarary, M. Nowoczyn et al., “Accuracy of plasma neutrophil gelatinase-associated lipocalin in the early diagnosis of contrast-induced acute kidney injury in critical illness,” Intensive Care Medicine, vol. 39, pp. 857–865, 2013. View at Google Scholar
  16. X. Shao, L. Tian, W. Xu et al., “Diagnostic value or urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis,” PLoS ONE, vol. 9, Article ID e84131, 2014. View at Publisher · View at Google Scholar
  17. H. S. Trivedi, H. Moore, S. Nasr et al., “A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity,” Nephron. Clinical practice, vol. 93, no. 1, pp. C29–C34, 2003. View at Google Scholar · View at Scopus
  18. P. A. McCullough, A. Adam, C. R. Becker et al., “Risk prediction of contrast-induced nephropathy,” The American Journal of Cardiology, vol. 98, no. 6, pp. 27–36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Solomon, C. Werner, D. Mann, J. D'Elia, and P. Silva, “Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents,” The New England Journal of Medicine, vol. 331, no. 21, pp. 1416–1420, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Lukas, A. Eren, D. Zellner et al., “Furosemide after contrast media does no harm to the kidneys and allows for preventive hydration,” Perfusion, vol. 16, pp. 326–333, 2003. View at Google Scholar
  21. G. Marenzi, C. Ferrari, I. Marana et al., “Prevention of contrast nephropathy by furosemide with matched hydration: the MYTHOS (induced diuresis with matched hydration compared to standard hydration for contrast induced nephropathy prevention) trial,” JACC: Cardiovascular Interventions, vol. 5, no. 1, pp. 90–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Solomon, “Forced diuresis with the RenalGuard system: impact on contrast induced acute kidney injury,” Journal of Cardiology, vol. 63, pp. 9–13, 2014. View at Google Scholar
  23. C. Briguori, “Renalguard system: a dedicated device to prevent contrast-induced acute kidney injury,” International Journal of Cardiology, vol. 6, pp. 291–297, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Mueller, G. Buerkle, H. J. Buettner et al., “Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty,” Archives of Internal Medicine, vol. 162, no. 3, pp. 329–336, 2002. View at Google Scholar · View at Scopus
  25. B. D. Bader, E. D. Berger, M. B. Heede et al., “What is the best hydration regimen to prevent contrast media-induced nephrotoxicity?” Clinical Nephrology, vol. 62, no. 1, pp. 1–7, 2004. View at Google Scholar · View at Scopus
  26. R. A. Krasuski, B. M. Beard, J. D. Geoghagan, C. M. Thompson, and S. A. Guidera, “Optimal timing of hydration to erase contrast-associated nephropathy: the OTHER CAN study,” Journal of Invasive Cardiology, vol. 15, no. 12, pp. 699–702, 2003. View at Google Scholar · View at Scopus
  27. F. Stacul, A. Adam, C. R. Becker et al., “Strategies to Reduce the Risk of Contrast-Induced Nephropathy,” The American Journal of Cardiology, vol. 98, no. 6, pp. 59–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Khoury, J. R. Schlicht, J. Como et al., “The effect of prophylactic nifedipine on renal function in patients administered contrast media,” Pharmacotherapy, vol. 15, no. 1, pp. 59–65, 1995. View at Google Scholar · View at Scopus
  29. J. K. Madsen, L. W. Jensen, J. Sandermann et al., “Effect of nitrendipine on renal function and on hormonal parameters after intravascular iopromide,” Acta Radiologica, vol. 39, no. 4, pp. 375–380, 1998. View at Google Scholar · View at Scopus
  30. M. Gare, Y. S. Haviv, A. Ben-Yehuda et al., “The renal effect of low-dose dopamine in high-risk patients undergoing coronary angiography,” Journal of the American College of Cardiology, vol. 34, no. 6, pp. 1682–1688, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. S. S. Hans, B. A. Hans, R. Dhillon, C. Dmuchowski, and J. Glover, “Effect of dopamine on renal function after arteriography in patients with pre-existing renal insufficiency,” The American Surgeon, vol. 64, no. 5, pp. 432–436, 1998. View at Google Scholar · View at Scopus
  32. L. S. Weisberg, P. B. Kurnik, and B. R. C. Kurnik, “Risk of radiocontrast nephropathy in patients with and without diabetes mellitus,” Kidney International, vol. 45, no. 1, pp. 259–265, 1994. View at Google Scholar · View at Scopus
  33. S. Allaqaband, R. Tumuluri, A. M. Malik et al., “Prospective randomized study of N-acetylcysteine, fenoldopam, and saline for prevention of radiocontrast-induced nephropathy,” Catheterization and Cardiovascular Interventions, vol. 57, no. 3, pp. 279–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. G. W. Stone, P. A. McCullough, J. A. Tumlin et al., “Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial,” Journal of the American Medical Association, vol. 290, no. 17, pp. 2284–2291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. J. A. Tumlin, A. Wang, P. T. Murray, and V. S. Mathur, “Fenoldopam mesylate blocks reductions in renal plasma flow after radiocontrast dye infusion: a pilot trial in the prevention of contrast nephropathy,” The American Heart Journal, vol. 143, no. 5, pp. 894–903, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. P. S. Teirstein, M. J. Price, V. S. Mathur, H. Madyoon, N. Sawhney, and D. S. Baim, “Differential effects between intravenous and targeted renal delivery of fenoldopam on renal function and blood pressure in patients undergoing cardiac catheterization,” The American Journal of Cardiology, vol. 97, no. 7, pp. 1076–1081, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. B. R. C. Kurnik, R. L. Allgren, F. C. Center, R. J. Solomon, E. R. Bates, and L. S. Weisberg, “Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy,” The American Journal of Kidney Diseases, vol. 31, no. 4, pp. 674–680, 1998. View at Google Scholar · View at Scopus
  38. A. Wang, T. Holcslaw, T. M. Bashore et al., “Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism,” Kidney International, vol. 57, no. 4, pp. 1675–1680, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. J.-A. Koch, J. Plum, B. Grabensee, and U. Mödder, “Prostaglandin E1: a new agent for the prevention of renal dysfunction in high risk patients caused by radiocontrast media?” Nephrology Dialysis Transplantation, vol. 15, no. 1, pp. 43–49, 2000. View at Google Scholar · View at Scopus
  40. D. Russo, R. Minutolo, B. Cianciaruso, B. Memoli, G. Conte, and L. de Nicola, “Early effects of contrast media on renal hemodynamics and tubular function in chronic renal failure,” Journal of the American Society of Nephrology, vol. 6, no. 5, pp. 1451–1458, 1995. View at Google Scholar · View at Scopus
  41. H. I. Miller, A. Dascalu, T. A. Rassin, Y. Wollman, T. Chernichowsky, and A. Iaina, “Effects of an acute dose of L-Arginine during coronary angiography in patients with chronic renal failure: a randomized, parallel, double-blind clinical trial,” The American Journal of Nephrology, vol. 23, no. 2, pp. 91–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Sporer, F. Lang, and H. Oberleithner, “Inefficacy of bicarbonate infusions on the course of postischaemic acute renal failure in the rat,” European Journal of Clinical Investigation, vol. 11, no. 4, pp. 311–315, 1981. View at Google Scholar · View at Scopus
  43. G. J. Merten, W. P. Burgess, L. V. Gray et al., “Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial,” Journal of the American Medical Association, vol. 291, no. 19, pp. 2328–2334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. S. Brar, A. Y.-J. Shen, M. B. Jorgensen et al., “Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1038–1046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Maioli, A. Toso, M. Leoncini et al., “Sodium bicarbonate versus saline fort he prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention,” Journal of the American College of Cardiology, vol. 52, no. 8, pp. 599–604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. S. Brar, S. Hiremath, G. Dangas, R. Mehran, S. K. Brar, and M. B. Leon, “Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 10, pp. 1584–1592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Hiremath and S. S. Brar, “The evidence for sodium bicarbonate therapy for contrast-associated acute kidney injury: far from settled science,” Nephrology Dialysis Transplantation, vol. 25, no. 8, pp. 2802–2804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. E. A. J. Hoste, J. J. De Waele, S. A. Gevaert, S. Uchino, and J. A. Kellum, “Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis,” Nephrology Dialysis Transplantation, vol. 25, no. 3, pp. 747–758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Meier, D. T. Ko, A. Tamura, U. Tamhane, and H. S. Gurm, “Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis,” BMC Medicine, vol. 7, article 23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Zoungas, T. Ninomiya, R. Huxley et al., “Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy,” Annals of Internal Medicine, vol. 151, no. 9, pp. 631–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Tepel, M. Van Der Giet, C. Schwarzfeld, U. Laufer, D. Liermann, and W. Zidek, “Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine,” The New England Journal of Medicine, vol. 343, no. 3, pp. 180–184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. O. Berwanger, “Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized acetylcysteine for contrast-induced nephropathy trial (ACT),” Circulation, vol. 124, no. 11, pp. 1250–1259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. B. K. Nallamothu, K. G. Shojania, S. Saint et al., “Is acetylcysteine effective in preventing contrast-related nephropathy? A meta-analysis,” The American Journal of Medicine, vol. 117, no. 12, pp. 938–947, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. M. Bagshaw and W. A. Ghali, “Acetylcysteine for prevention of contrast-induced nephropathy after intravascular angiography: a systematic reveiw and meta-analysis,” BMC Medicine, vol. 2, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. D. A. Gonzales, K. J. Norsworthy, S. J. Kern et al., “A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity,” BMC Medicine, vol. 5, article 32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. Sun, Q. Fu, L. Cao et al., “Intravenous N-acetylcysteine for prevention of contrast-induced nephropathy: a meta-analysis of randomized controlled trials,” PLoS ONE, vol. 8, Article ID e55124, 2013. View at Google Scholar
  57. C. Briguori, A. Colombo, A. Violante et al., “Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity,” European Heart Journal, vol. 25, no. 3, pp. 206–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. C. S. R. Baker, A. Wragg, S. Kumar, R. De Palma, L. R. I. Baker, and C. J. Knight, “A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study,” Journal of the American College of Cardiology, vol. 41, no. 12, pp. 2114–2118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. U. Ludwig, M. K. Riedel, M. Backes, A. Imhof, R. Muche, and F. Keller, “MESNA (sodium 2-mercaptoethanesulfonate) for prevention of contrast medium-induced nephrotoxicity—controlled trial,” Clinical Nephrology, vol. 75, no. 4, pp. 302–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. S. M. Bagshaw and W. A. Ghali, “Theophylline for prevention of contrast-induced nephropathy: a systematic review and meta-analysis,” Archives of Internal Medicine, vol. 165, no. 10, pp. 1087–1093, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Kabasakal, A. Ö. Şehirli, Ş. Çetinel, E. Cikler, N. Gedik, and G. Şener, “Mesna (2-mercaptoethane sulfonate) prevents ischemia/reperfusion induced renal oxidative damage in rats,” Life Sciences, vol. 75, no. 19, pp. 2329–2340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Spargias, E. Alexopoulos, S. Kyrzopoulos et al., “Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention,” Circulation, vol. 110, no. 18, pp. 2837–2842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. U. Sadat, A. Usmann, J. H. Gillard, and J. R. Boyle, “Does ascorbic acid protect against contrast-induced acute kidney injury in patients undergoing coronary angiography: a systematic review with meta-analysis of randomized, controlled trials,” Journal of the American College of Cardiology, vol. 62, pp. 2167–2175, 2013. View at Google Scholar
  64. S. Khanal, N. Attallah, D. E. Smith et al., “Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions,” The American Journal of Medicine, vol. 118, no. 8, pp. 843–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Patti, A. Nusca, M. Chello et al., “Usefulness of statin pretreatment to prevent contrast-induced nephropathy and to improve long-term outcome in patients undergoing percutaneous coronary intervention,” The American Journal of Cardiology, vol. 101, no. 3, pp. 279–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. H. Jo, B. K. Koo, J. S. Park et al., “Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography (PROMISS) trial-a randomized controlled study,” The American Heart Journal, vol. 155, no. 3, pp. 499.e1–499.e8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Toso, M. Maioli, M. Leoncini et al., “Usefulness of atorvastatin (80mg) in prevention of contrast-induced nephropathy in patients with chronic renal disease,” The American Journal of Cardiology, vol. 105, no. 3, pp. 288–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Patti, E. Ricottini, A. Nusca et al., “Short-term, high-dose atorvastatin pretreatment to prevent contrast-induced nephropathy in patients with acute coronary syndromes undergoing percutaneous coronary intervention (from the ARMYDA-CIN [atorvastatin for reduction of myocardial damage during angioplasty-contrast-induced nephropathy] trial,” The American Journal of Cardiology, vol. 108, no. 1, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Quintavalle, D. Fiore, F. De Micco et al., “Impact of high loading dose of atorvastatin on contrast-induced acute kidney injury,” Circulation, vol. 126, pp. 3008–3016, 2012. View at Google Scholar
  70. M. Moscucci, “Contrast-induced acute kidney injury: the continuous quest for pharmacological prevention,” Circulation: Cardiovascular Interventions, vol. 5, pp. 741–743, 2012. View at Google Scholar
  71. M. Leoncini, A. Toso, M. Maioli et al., “Early high-dose rosuvastatin for contrast-induced nephropathy prevention in acute coronary syndrom: results from the PRATO-ACS study (protective effect of rosuvastatin and antiplatelet therapy on contrast-induced acute kidney injury and myocardial damage in patients with acute coronary syndrome),” Journal of the American College of Cardiology, vol. 63, pp. 71–79, 2014. View at Google Scholar
  72. H. Frank, D. Werner, V. Lorusso et al., “Simultaneous hemodialysis during coronary angiography fails to prevent radiocontrast-induced nephropathy in chronic renal failure,” Clinical Nephrology, vol. 60, no. 3, pp. 176–182, 2003. View at Google Scholar · View at Scopus
  73. B. Vogt, P. Ferrari, C. Schönholzer et al., “Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful,” The American Journal of Medicine, vol. 111, no. 9, pp. 692–698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Lehnert, E. Keller, K. Gondolf, T. Schäffner, H. Pavenstädt, and P. Schollmeyer, “Effect of haemodialysis after contrast medium administration in patients with renal insufficiency,” Nephrology Dialysis Transplantation, vol. 13, no. 2, pp. 358–362, 1998. View at Google Scholar · View at Scopus
  75. S. S. Moon, S.-E. Back, J. Kurkus, and P. Nilsson-Ehle, “Hemodialysis for elimination of the nonionic contrast medium lohexol after angiography in patients with impaired renal function,” Nephron, vol. 70, no. 4, pp. 430–437, 1995. View at Google Scholar · View at Scopus
  76. G. Marenzi, I. Marana, G. Lauri et al., “The prevention of radiocontrast-agent-induced nephropathy by hemofiltration,” The New England Journal of Medicine, vol. 349, no. 14, pp. 1333–1340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Marenzi, G. Lauri, J. Campodonico et al., “Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients,” The American Journal of Medicine, vol. 119, no. 2, pp. 155–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. B. J. Barrett and E. J. Carlisle, “Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media,” Radiology, vol. 188, no. 1, pp. 171–178, 1993. View at Google Scholar · View at Scopus
  79. A. M. From, F. J. Al Badarin, F. S. McDonald, B. J. Bartholmai, S. S. Cha, and C. S. Rihal, “Iodixanol versus low-osmolar contrast media for prevention of contrast induced nephropathy meta-analysis of randomized, controlled trials,” Circulation: Cardiovascular Interventions, vol. 3, no. 4, pp. 351–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. F. Stacul, A. J. van der Molen, P. Reimer et al., “Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines,” European Radiology, vol. 21, no. 12, pp. 2527–2541, 2011. View at Publisher · View at Google Scholar · View at Scopus