Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 308371, 5 pages
Research Article

Tick-Borne Encephalitis Virus Habitats in North East Germany: Reemergence of TBEV in Ticks after 15 Years of Inactivity

1Department of Tropical Medicine, Infectious Diseases and Nephrology, University of Rostock Medical School, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany
2Health Department of the State of Mecklenburg-West Pomerania, 18055 Rostock, Germany
3Friedrich-Loeffler-Institute Jena, National Reference Laboratory for Tick-Borne Diseases, 07743 Jena, Germany
4Tick Information Center, 07646 Lippersdorf, Germany

Received 5 February 2014; Accepted 6 June 2014; Published 8 July 2014

Academic Editor: Peirong Jiao

Copyright © 2014 Silvius Frimmel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Süss and C. Schrader, “Durch Zecken übertragene humanpathogene und bisher als apathogen geltende Mikroorganismen in Europa Teil I: Zecken und Viren,” Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, vol. 47, no. 4, pp. 392–404, 2004. View at Google Scholar
  2. J. Süss, “Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia—an overview,” Ticks and Tick-Borne Diseases, vol. 2, no. 1, pp. 2–15, 2011. View at Google Scholar
  3. A. Mickiene, A. Laiškonis, G. Günther, S. Vene, A. Lundkvist, and L. Lindquist, “Tickborne Encephalitis in an area of high endemicity in Lithuania: disease severity and long-term prognosis,” Clinical Infectious Diseases, vol. 35, no. 6, pp. 650–658, 2002. View at Publisher · View at Google Scholar
  4. V. Danielová, N. Rudenko, M. Daniel et al., “Extension of Ixodes ricinus ticks and agents of tick-borne diseases in mountain areas in the Czech Republic,” International Journal of Medical Microbiology, vol. 296, supplement 40, pp. 48–53, 2006. View at Google Scholar
  5. J. Süss, C. Klaus, R. Diller, C. Schrader, N. Wohanka, and U. Abel, “TBE incidence versus virus prevalence and increa sed prevalence of the TBE virus in Ixodes ricinus removed from humans,” International Journal of Medical Microbiology, vol. 296, supplement 1, pp. 63–68, 2006. View at Google Scholar
  6. Robert Koch Institut, “FSME: Risikogebiete in Deutschland (Stand Mai 2013)—Bewertung des örtlichen Erkrankungsrisikos,” Epidemiologisches Bulletin, vol. 18, pp. 151–162, 2013. View at Google Scholar
  7. Robert-Koch-Institut, SurvStat, January 2014,
  8. H. Holzmann, S. W. Aberle, and K. Stiasny, “Tick-borne encephalitis from eating goat cheese in a mountain region of Austria,” Emerging Infectious Diseases, vol. 15, no. 10, pp. 1671–1673, 2009. View at Publisher · View at Google Scholar
  9. M. Löbermann, L. G. Gürtler, B. Eichler-Löbermann, and E. C. Reisinger, “Emerging viral diseases in Europe,” Deutsche Medizinische Wochenschrift, vol. 137, no. 17, pp. 900–905, 2012. View at Google Scholar
  10. T. Skarpaas, U. Ljøstad, and A. Sundøy, “First human case of tickborne encephalitis, Norway,” Emerging Infectious Diseases, vol. 10, no. 12, pp. 2241–2243, 2005. View at Google Scholar
  11. P. Zeman and C. Benes, “A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: possible impact of global warming?” International Journal of Medical Microbiology, vol. 293, supplement 37, pp. 48–54.
  12. O. Kahl, “Fatal attraction or how do we get tick bites?” Infection, vol. 24, no. 5, pp. 394–395, 1996. View at Google Scholar
  13. D. Sumilo, A. Bormane, and L. Asokliene, “Socio-economic factors in the differential upsurge of tick-borne encephalitis in central and eastern Europe,” Reviews of Medical Virology, vol. 18, no. 2, pp. 81–95, 2008. View at Google Scholar
  14. J. Süss, R. Sinnecker, and D. Sinnecker, “Epidemiology and ecology of tick-borne encephalitis in the eastern part of Germany between 1960 and 1990 and studies on the dynamics of a natural focus on tick-borne encephalitis,” Zentralblatt für Bakteriologie, vol. 277, no. 2, pp. 224–235, 1960. View at Google Scholar
  15. C. J. Hemmer, M. Littmann, M. Löbermann, M. Lafrenz, T. Böttcher, and E. C. Reisinger, “Tickborne meningoencephalitis, first case after 19 years in northeastern Germany,” Emerging Infectious Diseases, vol. 11, no. 4, pp. 633–634, 2005. View at Google Scholar
  16. J. Süss, P. Béziat, C. Schrader et al., “Viral zoonosis from the viewpoint of their epidemiological surveillance: tick-borne encephalitis as a model,” in Viral Zoonosis and Food of Animal Origin: A Re-Evaluation of Possible Hazards for Human Health, O. R. Kaaden, C. P. Czerny, and W. Eichhorn, Eds., pp. 229–243, Springer, New York, NY, USA, 1997. View at Google Scholar
  17. C. Klaus, B. Hoffmann, U. Hering et al., “Tick-borne encephalitis (TBE) virus prevalence and virus genome characterization in field-collected ticks (Ixodes ricinus) from risk, non-risk and former risk areas of TBE, and in ticks removed from humans in Germany,” Clinical Microbiology and Infection, vol. 16, no. 3, pp. 238–244, 2010. View at Publisher · View at Google Scholar
  18. S. Frimmel, A. Krienke, D. Riebold et al., “Frühsommer-Meningoenzephalitis (FSME)-Virus bei Menschen und Zecken in Mecklenburg-Vorpommern,” Deutsche Medizinische Wochenschrift, vol. 135, no. 27, pp. 1393–1396, 2010. View at Google Scholar
  19. E. Demikhovska, S. Sinha, and M. Littmann, “Jahresbericht über die erfassten meldepflichtigen Infektionskrankheiten in Mecklenburg-Vorpommern,” pp. 24–26, 2006.
  20. C. Schrader and J. Süss, “A nested RT-PCR for the detection of tick-borne encephalitis virus (TBEV) in ticks in natural foci,” Zentralblatt für Bakteriologie, vol. 289, no. 3, pp. 319–328, 1999. View at Google Scholar
  21. J. Süss, R. Béziat, H. P. Rohr, J. Treib, and A. Haass, “Detection of the tick-borne encephalitis virus (TBEV) in ticks in several federal “Länder” of Germany by means of the polymerase chain reaction (PCR)—characterization of the virus,” Infection, vol. 24, no. 5, pp. 403–404, 1996. View at Google Scholar
  22. E. Lindgren and R. Gustafson, “Tick-borne encephalitis in Sweden,” The Lancet, vol. 358, no. 9275, pp. 16–18, 2001. View at Google Scholar
  23. U. Kirsche and G. Lux, “Deutschlandwetter im Winter 2006/07-wärmster Winter aller Zeiten,” DWD. Pressemitteilung, 2007,
  24. M. Labuda, V. Danielova, L. D. Jones, and P. A. Nutall, “Amplification of tick-borne encephalitis virus infection during co-feeding of ticks,” Medical and Veterinary Entomology, vol. 7, no. 4, pp. 339–342, 1993. View at Google Scholar
  25. S. E. Randolph, “Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda's enduring paradigm,” Ticks and Tick-Borne Diseases, vol. 2, no. 4, pp. 179–182, 2011. View at Publisher · View at Google Scholar
  26. T. Heinicke and U. Köppen, “Vogelzug in Ostdeutschland I/1, Wasservögel, Entenvögel, Lappen- und Seetaucher, Kormoran, Löffler und Reiher,” in Beringungszentrale Hiddensee, Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern, Berichte der Vogelwarte Hiddensee 18, 2007. View at Google Scholar
  27. J. Süss, E. Gelpi, and C. Klaus, “Tickborne encephalitis in naturally exposed monkey (Macaca sylvanus),” Emerging Infectious Diseases, vol. 13, no. 6, pp. 905–907, 2007. View at Google Scholar
  28. J. Waldenström, A. Lundkvist, K. I. Falsk et al., “Migrating birds and tickborne encephalitis virus,” Emerging Infectious Diseases, vol. 13, no. 8, pp. 1215–1218, 2007. View at Google Scholar
  29. C. Klaus, M. Beer, R. Saier et al., “Goats and sheep as sentinels for tick-borne encephalitis (TBE) virus-epidemiological studies in areas endemic and non-endemic for TBE virus in Germany,” Ticks and Tick Borne Diseases, vol. 3, no. 1, pp. 27–37, 2012. View at Google Scholar