Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 313684, 9 pages
http://dx.doi.org/10.1155/2014/313684
Research Article

Antioxidant/Prooxidant and Antibacterial/Probacterial Effects of a Grape Seed Extract in Complex with Lipoxygenase

1Laboratory of Animal Biology, National Research Development Institute for Animal Biology and Nutrition (IBNA), Calea Bucureşti nr. 1, Baloteşti, 077015 Ilfov, Romania
2Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400 565 Cluj-Napoca, Romania
3Department of Microbiology-Immunology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
4School of Agricultural and Food Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210, Bondo 40601, Kenya
5Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania

Received 22 February 2014; Accepted 29 July 2014; Published 15 September 2014

Academic Editor: Juliana Maria Leite Nobrega de Moura Bell

Copyright © 2014 Veronica Sanda Chedea et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Llobera and J. Cañellas, “Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem,” Food Chemistry, vol. 101, no. 2, pp. 659–666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. FAO STAT Database, 2012, http://faostat.fao.org.
  3. V. Amico, E. M. Napoli, A. Renda, G. Ruberto, C. Spatafora, and C. Tringali, “Constituents of grape pomace from the Sicilian cultivar “Nerello Mascalese”,” Food Chemistry, vol. 88, no. 4, pp. 599–607, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Shi, J. Yu, J. E. Pohorly, and Y. Kakuda, “Polyphenolics in grape seeds—biochemistry and functionality,” Journal of Medicinal Food, vol. 6, no. 4, pp. 291–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Hayasaka, E. J. Waters, V. Cheynier, M. J. Herderich, and S. Vidal, “Characterization of proanthocyanidins in grape seeds using electrospray mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 17, no. 1, pp. 9–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Torres, B. Varela, M. T. García et al., “Valorization of grape (Vitis vinifera) byproducts: antioxidant and biological properties of polyphenolic fractions differing in procyanidin composition and flavonol content,” Journal of Agricultural and Food Chemistry, vol. 50, no. 26, pp. 7548–7555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Wen-Guang, Z. Xiao-Yu, W. Yong-Jie, and T. Xuan, “Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds,” Acta Pharmacologica Sinica, vol. 22, no. 12, pp. 1117–1120, 2001. View at Google Scholar · View at Scopus
  8. M. Sato, D. Bagchi, A. Tosaki, and D. K. Das, “Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN,” Free Radical Biology and Medicine, vol. 31, no. 6, pp. 729–737, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. Y.-J. Surh, “Cancer chemoprevention with dietary phytochemicals,” Nature Reviews Cancer, vol. 3, no. 10, pp. 768–780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Feng, Y.-M. Liu, J. D. Fratkins, and M. H. LeBlanc, “Grape seed extract suppresses lipid peroxidation and reduces hypoxic ischemic brain injury in neonatal rats,” Brain Research Bulletin, vol. 66, no. 2, pp. 120–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Schewe, “15-lipoxygenase-1: a prooxidant enzyme,” Biological Chemistry, vol. 383, no. 3-4, pp. 365–374, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Simonetti, S. Ciappellano, C. Gardana, L. Bramati, and P. Pietta, “Procyanidins from Vitis vinifera seeds: in vivo effects on oxidative stress,” Journal of Agricultural and Food Chemistry, vol. 50, no. 21, pp. 6217–6221, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Banerjee, “Inhibition of mackerel (Scomber scombrus) muscle lipoxygenase by green tea polyphenols,” Food Research International, vol. 39, no. 4, pp. 486–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. D. S. Robinson, Z. Wu, C. Domoney, and R. Casey, “Lipoxygenases and the quality of foods,” Food Chemistry, vol. 54, no. 1, pp. 33–43, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Casey and R. K. Hughes, “Recombinant lipoxygenases and oxylipin metabolism in relation to food quality,” Food Biotechnology, vol. 18, no. 2, pp. 135–170, 2004. View at Google Scholar · View at Scopus
  16. I. Schneider and F. Bucar, “Lipoxygenase inhibitors from natural plant sources, part 1: medicinal plants with inhibitory activity on arachidonate 5-lipoxygenase and 5-lipoxygenase/cyclooxygenase,” Phytotherapy Research, vol. 19, no. 2, pp. 81–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Zhou, Q. Miao, L. Yang, and Z. L. Liu, “Antioxidative effects of flavonols and their glycosides against the free-radical-induced peroxidation of linoleic acid in solution and in micelles,” Chemistry—A European Journal, vol. 11, no. 2, pp. 680–691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Schewe, C. Sadik, L.-O. Klotz, T. Yoshimoto, H. Kühn, and H. Sies, “Polyphenols of cocoa: Inhibition of mammalian 15-lipoxygenase,” Biological Chemistry, vol. 382, no. 12, pp. 1687–1696, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Schewe, H. Kühn, and H. Sies, “Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase,” Journal of Nutrition, vol. 132, pp. 1825–1829, 2002. View at Google Scholar
  20. M. Saito, H. Hosoyama, T. Ariga, S. Kataoka, and N. Yamaji, “Antiulcer activity of grape seed extract and procyanidins,” Journal of Agricultural and Food Chemistry, vol. 46, no. 4, pp. 1460–1464, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Laparra, J. Michaud, and J. Masquelier, “Action of oligomeric procyanidins on vitamin C deficient guinea pig,” Bulletin—Société de Pharmacie de Bordeaux, vol. 118, pp. 7–13, 1979. View at Google Scholar
  22. G. J. Soleas, E. P. Diamandis, and D. M. Goldberg, “Wine as a biological fluid: history, production, and role in disease prevention,” Journal of Clinical Laboratory Analysis, vol. 11, no. 5, pp. 287–313, 1997. View at Google Scholar
  23. J. Ahn, I. U. Grün, and A. Mustapha, “Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef,” Food Microbiology, vol. 24, no. 1, pp. 7–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. G. K. Jayaprakasha, T. Selvi, and K. K. Sakariah, “Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts,” Food Research International, vol. 36, no. 2, pp. 117–122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. V. S. Chedea, C. Braicu, F. Chirilǎ, C. Ober, and C. Socaciu, “Antibacterial action of an aqueous grape seed polyphenolic extract,” African Journal of Biotechnology, vol. 10, no. 33, pp. 6276–6280, 2011. View at Google Scholar · View at Scopus
  26. J. M. Stelling, K. Travers, R. N. Jones, P. J. Turner, T. F. O'Brien, and S. B. Levy, “Integrating Escherichia coli antimicrobial susceptibility data from multiple surveillance programs,” Emerging Infectious Diseases, vol. 11, no. 6, pp. 873–882, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. V. S. Chedea, C. Braicu, and C. Socaciu, “Antioxidant/prooxidant activity of a polyphenolic grape seed extract,” Food Chemistry, vol. 121, no. 1, pp. 132–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. V. S. Chedea, S. Vicaş, and C. Socaciu, “Kinetics of soybean lipoxygenases are related to pH, substrate availability and extraction procedures,” Journal of Food Biochemistry, vol. 32, no. 2, pp. 153–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. D. Sadik, H. Sies, and T. Schewe, “Inhibition of 15-lipoxygenases by flavonoids: structure-activity relations and mode of action,” Biochemical Pharmacology, vol. 65, no. 5, pp. 773–781, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Babich, A. G. Schuck, J. H. Weisburg, and H. L. Zuckerbraun, “Research strategies in the study of the pro-oxidant nature of polyphenol nutraceuticals,” Journal of Toxicology, vol. 2011, Article ID 467305, 12 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. V. S. Chedea, C. Echim, C. Braicu, M. Andjelkovic, R. Verhe, and C. Socaciu, “Composition in polyphenols and stability of the aqueous grape seed extract from the Romanian variety ‘merlot recas’,” Journal of Food Biochemistry, vol. 35, no. 1, pp. 92–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. A. G. Gornall, G. Charles, C. J. Bardawill, J. Maxima, and M. M. David, “Determination of serum proteins by means of the biuret reaction,” The Journal of Biological Chemistry, vol. 177, no. 2, pp. 751–766, 1949. View at Google Scholar · View at Scopus
  33. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventos, “Oxidant and antioxidant (Part A),” in Methods in Enzymology, L. Packer, Ed., vol. 299, pp. 152–178, Academic Press, San Diego, Calif, USA, 1999. View at Google Scholar
  34. V. S. Chedea, C. Echim, and S. Vicaş, “Composition in isoflavones of a soybean enzymatic extract,” Bulletin of the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Agriculture, vol. 66, no. 2, pp. 259–264, 2009. View at Google Scholar
  35. M. D. C. Pinto and P. Macias, “Oxidation of dietary polyphenolics by hydroperoxidase activity of lipoxygenase,” Journal of Agricultural and Food Chemistry, vol. 53, no. 23, pp. 9225–9230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. G. Boersma, J. Vervoort, H. Szymusiak et al., “Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide,” Chemical Research in Toxicology, vol. 13, no. 3, pp. 185–191, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Caturla, E. Vera-Samper, J. Villalaín, C. R. Mateo, and V. Micol, “The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes,” Free Radical Biology and Medicine, vol. 34, no. 6, pp. 648–662, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Nakayama, T. Hashimoto, K. Kajiya, and S. Kumazawa, “Affinity of polyphenols for lipid bilayers,” Biofactors, vol. 13, no. 1–4, pp. 147–151, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Friedman, “Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas,” Molecular Nutrition & Food Research, vol. 51, no. 1, pp. 116–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Arakawa, M. Maeda, S. Okubo, and T. Shimamura, “Role of hydrogen peroxide in bactericidal action of catechin,” Biological and Pharmaceutical Bulletin, vol. 27, no. 3, pp. 277–281, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Hayakawa, Y. Ishizu, N. Hoshino, A. Yamaji, T. Ando, and T. Kimura, “Prooxidative activities of tea catechins in the presence of Cu2+,” Bioscience, Biotechnology and Biochemistry, vol. 68, no. 9, pp. 1825–1830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Friedman, “Structure–antibiotic activity relationships of plant compounds against nonresistant and antibiotic-resistant foodborne pathogens,” in Advances in Microbial Food Safety, V. K. Juneja, J. P. Cherry, and M. H. Tunick, Eds., pp. 167–183, American Chemical Society, Washington, DC, USA, 2006. View at Google Scholar