Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 327452, 11 pages
Research Article

Antioxidant and Anti-Inflammatory Effects of Selected Natural Compounds Contained in a Dietary Supplement on Two Human Immortalized Keratinocyte Lines

1Institute of General Pathology, Catholic University, 00168 Rome, Italy
2Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87030 Cosenza, Italy
3Institute of Clinical Dermatology, Catholic University, 00168 Rome, Italy
4Research Center for Biotechnology Applied to Cosmetology, Catholic University, 00168 Rome, Italy
5Institute of Pathology, Catholic University, 00168 Rome, Italy

Received 27 June 2014; Revised 31 July 2014; Accepted 31 July 2014; Published 17 August 2014

Academic Editor: Giuseppe Piccione

Copyright © 2014 Elena Fasano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Several advantages may derive from the use of dietary supplements containing multiple natural antioxidants and/or anti-inflammatory agents. At present, however, there is scarce information on the properties and potential of combined supplements. To fill the gap, the antioxidant and anti-inflammatory activities exerted by a combination of seven natural components (coenzyme Q10, krill oil, lipoic acid, resveratrol, grape seed oil, α-tocopherol, and selenium) contained in a dietary supplement used for the prevention of skin disorders were investigated in vitro. Each component was administered, alone or in combination, to human keratinocytes, and the inhibition of Reactive Oxygen Species production and lipid peroxidation as well as the ability to reduce inflammatory cytokine secretion and to modulate Nuclear Factor-κB pathway was evaluated. The combination exhibited high antioxidant activity and in specific conditions the combination’s efficiency was higher than that of the most powerful components administered individually. Moreover, the combination showed remarkable anti-inflammatory properties. It reduced more efficiently than each component the secretion of Monocyte Chemoattractant Protein-1, a crucial cytokine for the development of chronic inflammation in skin, and inhibited Nuclear Factor-κB molecular pathway. Overall, our findings suggest that the combined formulation may have the potential to powerfully inhibit oxidative stress and inflammation at skin level.