Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 327452, 11 pages
http://dx.doi.org/10.1155/2014/327452
Research Article

Antioxidant and Anti-Inflammatory Effects of Selected Natural Compounds Contained in a Dietary Supplement on Two Human Immortalized Keratinocyte Lines

1Institute of General Pathology, Catholic University, 00168 Rome, Italy
2Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87030 Cosenza, Italy
3Institute of Clinical Dermatology, Catholic University, 00168 Rome, Italy
4Research Center for Biotechnology Applied to Cosmetology, Catholic University, 00168 Rome, Italy
5Institute of Pathology, Catholic University, 00168 Rome, Italy

Received 27 June 2014; Revised 31 July 2014; Accepted 31 July 2014; Published 17 August 2014

Academic Editor: Giuseppe Piccione

Copyright © 2014 Elena Fasano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Calviello, H. Su, K. H. Weylandt, E. Fasano, S. Serini, and A. Cittadini, “Experimental evidence of ω-3 polyunsaturated fatty acid modulation of inflammatory cytokines and bioactive lipid mediators: their potential role in inflammatory, neurodegenerative, and neoplastic diseases,” BioMed Research International, vol. 2013, Article ID 743171, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Manfredini, S. Vertuani, B. Manfredi, G. Rossoni, G. Calviello, and P. Palozza, “Novel antioxidant agents deriving from molecular combinations of vitamins C and E analogues: 3,4-dihydroxy-5(R),” Bioorganic and Medicinal Chemistry, vol. 8, no. 12, pp. 2791–2801, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Trombino, S. Serini, F. di Nicuolo et al., “Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with alpha-tocopherol, beta-carotene, and ascorbic acid,” Journal of Agricultural and Food Chemistry, vol. 52, no. 8, pp. 2411–2420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Bjelakovic, D. Nikolova, and C. Gluud, “Antioxidant supplements and mortality,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 17, no. 1, pp. 40–44, 2014. View at Google Scholar
  5. A. Speciale, J. Chirafisi, A. Saija, and F. Cimino, “Nutritional antioxidants and adaptive cell responses: an update,” Current Molecular Medicine, vol. 11, no. 9, pp. 770–789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Sies, “Strategies of antioxidant defense,” European Journal of Biochemistry, vol. 215, no. 2, pp. 213–219, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Corti, V. De Tata, and A. Pompella, “Agenti e meccanismi distress ossidativo nella patologia umana,” Ligand Assay, vol. 14, no. 1, pp. 9–16, 2009. View at Google Scholar
  8. P. Palozza, E. Piccioni, L. Avanzi, S. Vertuani, G. Calviello, and S. Manfredini, “Design, synthesis, and antioxidant activity of FeAOX-6, a novel agent deriving from a molecular combination of the chromanyl and polyisoprenyl moieties,” Free Radical Biology and Medicine, vol. 33, no. 12, pp. 1724–1735, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Trombino, R. Cassano, R. Muzzalupo, A. Pingitore, E. Cione, and N. Picci, “Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of β-carotene and α-tocopherol,” Colloids and Surfaces B: Biointerfaces, vol. 72, no. 2, pp. 181–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. M. C. Almeida, J. C. M. Barreira, M. B. P. P. Oliveira, and I. C. F. R. Ferreira, “Dietary antioxidant supplements: benefits of their combined use,” Food and Chemical Toxicology, vol. 49, no. 12, pp. 3232–3237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Serini, V. Donato, E. Piccioni et al., “Docosahexaenoic acid reverts resistance to UV-induced apoptosis in human keratinocytes: involvement of COX-2 and HuR,” Journal of Nutritional Biochemistry, vol. 22, no. 9, pp. 874–885, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Burlando, A. Parodi, A. Volante, and A. M. Bassi, “Comparison of the irritation potentials of Boswellia serrata gum resin and of acetyl-11-keto-β-boswellic acid by in vitro cytotoxicity tests on human skin-derived cell lines,” Toxicology Letters, vol. 177, no. 2, pp. 144–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Walle, “Bioavailability of resveratrol,” Annals of the New York Academy of Sciences, vol. 1215, no. 1, pp. 9–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Butler, C. D. Thomson, P. D. Whanger, and M. F. Robinson, “Selenium distribution in blood fractions of New Zealand women taking organic or inorganic selenium,” The American Journal of Clinical Nutrition, vol. 53, no. 3, pp. 748–754, 1991. View at Google Scholar · View at Scopus
  15. J. P. Schuchardt, I. Schneider, H. Meyer et al., “Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations—a comparative bioavailability study of fish oil vs. krill oil,” Lipids in Health and Disease, vol. 10, article 145, 2011. View at Publisher · View at Google Scholar
  16. B. J. Lee, Y. C. Huang, S. J. Chen, and P. T. Lin, “Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease,” Nutrition, vol. 28, no. 3, pp. 250–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Dai, T. Luk, K. Yiu et al., “Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: a randomized controlled trial,” Atherosclerosis, vol. 216, no. 2, pp. 395–401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. J. Keith, J. A. Butler, B. Bemer et al., “Age and gender dependent bioavailability of R- and R,S-α-lipoic acid: a pilot study,” Pharmacological Research, vol. 66, no. 3, pp. 199–206, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Zhang, L. Dang, F. Guo, X. Wang, W. Zhao, and R. Zhao, “Coenzyme Q10 enhances dermal elastin expression, inhibits IL-1α production and melanin synthesis in vitro,” International Journal of Cosmetic Science, vol. 34, no. 3, pp. 273–279, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. T. L. Hwang, C. J. Tsai, J. L. Chen, T. Changchien, C. Wang, and C. Wu, “Magnesium ascorbyl phosphate and coenzyme Q10 protect keratinocytes against UVA irradiation by suppressing glutathione depletion,” Molecular Medicine Reports, vol. 6, no. 2, pp. 375–378, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. J. Zhu, J. H. Shi, W. B. Qian, Z. Cai, and D. Li, “Effects of Krill Oil on serum lipids of hyperlipidemic rats and human SW480 cells,” Lipids in Health and Disease, vol. 7, article 30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. V. A. van Beelen, J. Roeleveld, H. Mooibroek et al., “A comparative study on the effect of algal and fish oil on viability and cell proliferation of Caco-2 cells,” Food and Chemical Toxicology, vol. 45, no. 5, pp. 716–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Ji, A. S. Majid, and Z. Q. Yin, “α-lipoic acid attenuates light insults to neurones,” Biological & Pharmaceutical Bulletin, vol. 36, no. 7, pp. 1060–1067, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. S. Kim, B. Podder, and H. Y. Song, “Cytoprotective effect of alpha-lipoic acid on paraquat-exposed human bronchial epithelial cells via activation of nuclear factor erythroid related factor-2 pathway,” Biological & Pharmaceutical Bulletin, vol. 36, no. 5, pp. 802–811, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Marrot, C. Jones, P. Perez, and J. R. Meunier, “The significance of Nrf2 pathway in (photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis,” Pigment Cell & Melanoma Research, vol. 21, no. 1, pp. 79–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Ishiki, Y. Nishida, H. Ishibashi et al., “Impact of divergent effects of astaxanthin on insulin signaling in L6 cells,” Endocrinology, vol. 154, no. 8, pp. 2600–2612, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Vitale, A. Kisslinger, S. Paladino et al., “Resveratrol couples apoptosis with autophagy in UVB-irradiated HaCaT cells,” PLoS ONE, vol. 8, no. 11, Article ID e80728, 2013. View at Google Scholar
  28. Y. Liu, F. Chan, H. Sun et al., “Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression,” European Journal of Pharmacology, vol. 650, no. 1, pp. 130–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Bastianetto, Y. Dumont, A. Duranton, F. Vercauteren, L. Breton, and R. Quirion, “Protective action of resveratrol in human skin: possible involvement of specific receptor binding sites,” PLoS ONE, vol. 5, no. 9, Article ID e12935, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Park and J. H. Lee, “Protective effects of resveratrol on UVB-irradiated HaCaT cells through attenuation of the caspase pathway,” Oncology Reports, vol. 19, no. 2, pp. 413–417, 2008. View at Google Scholar · View at Scopus
  31. F. Hazane-Puch, P. Champelovier, J. Arnaud et al., “Long-term selenium supplementation in HaCaT cells: importance of chemical form for antagonist (protective versus toxic) activities,” Biological Trace Element Research, vol. 154, no. 2, pp. 288–298, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. T. S. Rafferty, M. H. L. Green, J. E. Lowe et al., “Effects of selenium compounds on induction of DNA damage by broadband ultraviolet radiation in human keratinocytes,” British Journal of Dermatology, vol. 148, no. 5, pp. 1001–1009, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. T. S. Rafferty, G. J. Beckett, C. Walker et al., “Selenium protects primary human keratinocytes from apoptosis induced by exposure to ultraviolet radiation,” Clinical and Experimental Dermatology, vol. 28, no. 3, pp. 294–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. C. de Pascale, A. M. Bassi, V. Patrone, L. Villacorta, A. Azzi, and J. Zingg, “Increased expression of transglutaminase-1 and PPARγ after vitamin E treatment in human keratinocytes,” Archives of Biochemistry and Biophysics, vol. 447, no. 2, pp. 97–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. H. Česen, U. Repnik, V. Turk, and B. Turk, “Siramesine triggers cell death through destabilisation of mitochondria, but not lysosomes,” Cell Death and Disease, vol. 4, p. e818, 2013. View at Google Scholar
  36. B. Marzani, D. Pinto, F. Minervini et al., “The antimicrobial peptide pheromone Plantaricin A increases antioxidant defenses of human keratinocytes and modulates the expression of filaggrin, involucrin, β-defensin 2 and tumor necrosis factor-α genes,” Experimental Dermatology, vol. 21, no. 9, pp. 665–671, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Otsu, K. Sato, M. Sato, H. Ono, Y. Ohba, and Y. Katagata, “Impaired activation of caspase cascade during cell death induced by newly synthesized singlet oxygen generator, 1-buthylnaphthalene-4-propionate endoperoxide,” Cell Biology International, vol. 32, no. 11, pp. 1380–1387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Mazière, F. Dantin, F. Dubois, R. Santus, and J. Mazière, “Biphasic effect of UVA radiation on STAT1 activity and tyrosine phosphorylation in cultured human keratinocytes,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1430–1437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Moll, M. Divo, and L. Langbein, “The human keratins: biology and pathology,” Histochemistry and Cell Biology, vol. 129, no. 6, pp. 705–733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. D. A. Vessey, K. H. Lee, and T. D. Boyer, “Differentiation-induced enhancement of the ability of cultured human keratinocytes to suppress oxidative stress,” Journal of Investigative Dermatology, vol. 104, no. 3, pp. 355–358, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. W. J. Carr, R. E. Oberley-Deegan, Y. Zhang, C. C. Oberley, L. W. Oberley, and M. Dunnwald, “Antioxidant proteins and reactive oxygen species are decreased in a murine epidermal side population with stem cell-like characteristics,” Histochemistry and Cell Biology, vol. 135, no. 3, pp. 293–304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. D. Thomson, M. F. Robinson, J. A. Butler, and P. D. Whanger, “Long-term supplementation with selenate and selenomethionine: Selenium and glutathione peroxidase (EC 1.11.1.9) in blood components of New Zealand women,” British Journal of Nutrition, vol. 69, no. 2, pp. 577–588, 1993. View at Publisher · View at Google Scholar · View at Scopus
  43. M. E. Wastney, G. F. Combs Jr., W. K. Canfield et al., “A human model of selenium that integrates metabolism from selenite and selenomethionine,” Journal of Nutrition, vol. 141, no. 4, pp. 708–717, 2011. View at Publisher · View at Google Scholar · View at Scopus