Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 345910, 11 pages
http://dx.doi.org/10.1155/2014/345910
Research Article

Repair of Segmental Load-Bearing Bone Defect by Autologous Mesenchymal Stem Cells and Plasma-Derived Fibrin Impregnated Ceramic Block Results in Early Recovery of Limb Function

1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
2Department of Orthopaedics and Traumatology, Kuala Lumpur General Hospital, 50586 Kuala Lumpur, Malaysia
3Orthopaedic, Traumatology and Spinal Surgery Consultant Clinic, Johor Specialist Hospital, 80100 Johor Bahru, Malaysia
4Materials Technology Group (MTEG), Industrial Technology Division (BTI), Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
5UKM Animal Resource Centre, Medical Faculty, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
6Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
7Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
8Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000 Ampang, Malaysia
9Department of Physiology, Medical Faculty, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

Received 24 January 2014; Revised 9 June 2014; Accepted 9 June 2014; Published 8 July 2014

Academic Editor: Aaron W. James

Copyright © 2014 Min Hwei Ng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. C. Rodriguez-Merchan and F. Forriol, “Nonunion: general principles experimental data,” Clinical Orthopaedics and Related Research, vol. 419, pp. 4–12, 2004. View at Google Scholar · View at Scopus
  2. A. R. Sulaiman, S. Nordin, W. I. Faisham, W. Zulmi, and A. S. Halim, “Residual nonunion following vascularised fibular graft treatment for congenital pseudarthrosis of the tibia: a report of two cases,” Journal of Orthopaedic Surgery, vol. 14, no. 1, pp. 64–66, 2006. View at Google Scholar · View at Scopus
  3. D. Paley and D. C. Maar, “Ilizarov bone transport treatment for tibial defects,” Journal of Orthopaedic Trauma, vol. 14, no. 2, pp. 76–85, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Jannetty, E. Kolb, J. Boxberger, R. Deslauriers, and T. Ganey, “Guiding bone formation in a critical-sized defect and assessments,” Journal of Craniofacial Surgery, vol. 21, no. 6, pp. 1848–1854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. E. C. Rose, “Pin site care with the Ilizarov circular fixator,” Internet Journal of Orthopaedic Surgery, vol. 16, no. 1, 2010. View at Publisher · View at Google Scholar
  6. N. Ferreira and L. C. Marais, “Pin tract sepsis: incidence with the use of circular fixators in a limb reconstruction unit,” Southern African Orthopaedic Journal, vol. 11, pp. 40–44, 2012. View at Google Scholar
  7. M. Cabraja and S. Kroppenstedt, “Bone grafting and substitutes in spine surgery,” Journal of Neurosurgical Sciences, vol. 56, no. 2, pp. 87–95, 2012. View at Google Scholar · View at Scopus
  8. N. C. Vining, W. J. Warme, and V. S. Mosca, “Comparison of structural bone autografts and allografts in pediatric foot surgery,” Journal of Pediatric Orthopaedics, vol. 32, no. 7, pp. 719–723, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. M. MacIsaac, S. A. Rottgers, A. J. Davit III, M. Ford, J. E. Losee, and A. R. Kumar, “Alveolar reconstruction in cleft patients: decreased morbidity and improved outcomes with supplemental demineralized bone matrix and cancellous allograft,” Plastic and Reconstructive Surgery, vol. 130, no. 3, pp. 625–632, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Liu, Y. Li, J. Sun et al., “In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix,” Tissue Engineering A, vol. 16, no. 3, pp. 971–982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Buthelezi and E. Ross, “Gift of life or cultural taboo: effects of an educational pamphlet on young adults' knowledge and attitudes regarding organ donation,” Social Work in Health Care, vol. 50, no. 9, pp. 719–738, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Bagher, F. Rajaei, and M. Shokrgozar, “Comparative study of bone repair using porous hydroxyapatite/ β-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect,” Iranian Biomedical Journal, vol. 16, no. 1, pp. 18–24, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. C. Chai, A. Carlier, J. Bolander et al., “Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies,” Acta Biomaterialia, vol. 8, no. 11, pp. 3876–3887, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Bose and S. Tarafder, “Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review,” Acta Biomaterialia, vol. 8, no. 4, pp. 1401–1421, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Yuan, H. Fernandes, P. Habibovic et al., “Osteoinductive ceramics as a synthetic alternative to autologous bone grafting,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 31, pp. 13614–13619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. K. Nandi, B. Kundu, S. Datta, D. K. De, and D. Basu, “The repair of segmental bone defects with porous bioglass: an experimental study in goat,” Research in Veterinary Science, vol. 86, no. 1, pp. 162–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Fan, Y. Lu, L. Deng et al., “Placenta- versus bone-marrow-derived mesenchymal cells for the repair of segmental bone defects in a rabbit model,” FEBS Journal, vol. 279, no. 13, pp. 2455–2465, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Xu, K. Lv, W. Zhang, X. Zhang, X. Jiang, and F. Zhang, “The healing of critical-size calvarial bone defects in rat with rhPDGF-BB, BMSCs, and β-TCP scaffolds,” Journal of Materials Science: Materials in Medicine, vol. 23, no. 4, pp. 1073–1084, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Agacayak, B. Gulsun, M. C. Ucan, E. Karaoz, and Y. Nergiz, “Effects of mesenchymal stem cells in critical size bone defect,” European Review for Medical and Pharmacological Sciences, vol. 16, no. 5, pp. 679–686, 2012. View at Google Scholar · View at Scopus
  20. A. M. Boos, J. S. Loew, G. Deschler et al., “Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model,” Journal of Cellular and Molecular Medicine, vol. 15, no. 6, pp. 1364–1378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Zhang, T. Mao, and F. Chen, “Influence of platelet-rich plasma on ectopic bone formation of bone marrow stromal cells in porous coral,” International Journal of Oral and Maxillofacial Surgery, vol. 40, no. 9, pp. 961–965, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Kasten, J. Vogel, I. Beyen et al., “Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference,” Journal of Biomaterials Applications, vol. 23, no. 2, pp. 169–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. B. Nair, H. K. Varma, K. V. Menon, S. J. Shenoy, and A. John, “Reconstruction of goat femur segmental defects using triphasic ceramic-coated hydroxyapatite in combination with autologous cells and platelet-rich plasma,” Acta Biomaterialia, vol. 5, no. 5, pp. 1742–1755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Bernhardt, A. Lode, F. Peters, and M. Gelinsky, “Optimization of culture conditions for osteogenically-induced mesenchymal stem cells in β-tricalcium phosphate ceramics with large interconnected channels,” Journal of Tissue Engineering and Regenerative Medicine, vol. 5, no. 6, pp. 444–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Ng, B. S. Aminuddin, K. Tan et al., “Comparison of bioengineered human bone construct from four sources of osteogenic cells,” Journal of Orthopaedic Science, vol. 10, no. 2, pp. 192–199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. R. Chowdhury, M. H. Ng, N. S. A. Hassan, B. S. Aminuddin, and B. H. I. Ruszymah, “Identification of suitable culture condition for expansion and osteogenic differentiation of human bone marrow stem cells,” Human Cell, vol. 25, no. 3, pp. 69–77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. J. van den Dolder, R. Mooren, A. P. Vloon, P. J. Stoelinga, and J. A. Jansen, “Platelet-rich plasma: quantification of growth factor levels and the effect on growth and differentiation of rat bone marrow cells,” Tissue Engineering, vol. 12, no. 11, pp. 3067–3073, 2006. View at Publisher · View at Google Scholar
  28. M. B. Nair, H. K. Varma, and A. John, “Platelet-rich plasma and fibrin glue-coated bioactive ceramics enhance growth and differentiation of goat bone marrow-derived stem cells,” Tissue Engineering A, vol. 15, no. 7, pp. 1619–1631, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Y. Phang, M. H. Ng, K. K. Tan, B. S. Aminuddin, B. H. Ruszymah, and O. Fauziah, “Evaluation of suitable biodegradable scaffolds for engineered bone tissue,” The Medical Journal of Malaysia, vol. 59, supplement B, pp. 198–199, 2004. View at Google Scholar · View at Scopus
  30. Z. Zhang, A. Huang, J. J. Fan et al., “The potential use of allogeneic platelet-rich plasma for large bone defect treatment: immunogenicity and defect healing efficacy,” Cell Transplantation, vol. 22, no. 1, pp. 175–187, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. S. H. Kwon, Y. K. Jun, S. H. Hong, and H. E. Kim, “Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders,” Journal of the European Ceramic Society, vol. 23, no. 7, pp. 1039–1045, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. H. Ng, K. K. Tan, M. Y. Phang et al., “Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone,” Journal of Biomedical Materials Research A, vol. 85, no. 2, pp. 301–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Soltan, D. Smiler, H. S. Prasad, and M. D. Rohrer, “Bone block allograft impregnated with bone marrow aspirate,” Implant Dentistry, vol. 16, no. 4, pp. 329–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. H. Ng, B. S. Aminuddin, K. K. Tan et al., “Seeding method and scaffold selection in bone tissue engineering,” in Proceedings of the 8th Annual Meeting of Tissue Engineering Society International, p. 159, Shanghai, China, 2005.
  35. S. L. Salkeld, L. P. Patron, R. L. Barrack, and S. D. Cook, “The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone,” The Journal of Bone and Joint Surgery, vol. 83, no. 6, pp. 803–816, 2001. View at Google Scholar · View at Scopus
  36. J. C. Reichert, S. Saifzadeh, M. E. Wullschleger et al., “The challenge of establishing preclinical models for segmental bone defect research,” Biomaterials, vol. 30, no. 12, pp. 2149–2163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Li, H. An, B. Liang, R. Li, W. Tian, and M. Wei, “Changes in intraosseous pressure and bone blood flow of the distal femoral shaft after femoral medullary canal blocking with bone cement,” Zhongguo Zuzhi Gongcheng Yanjiuyu Linchuang Kangfu, vol. 12, no. 14, pp. 2785–2788, 2008. View at Google Scholar · View at Scopus
  38. F. Pieri, E. Lucarelli, G. Corinaldesi et al., “Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs,” Journal of Oral and Maxillofacial Surgery, vol. 67, no. 2, pp. 265–272, 2009. View at Publisher · View at Google Scholar · View at Scopus