Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 351821, 13 pages
Research Article

The Proteome of the Differentiating Mesencephalic Progenitor Cell Line CSM14.1 In Vitro

1Department of Anatomy, University of Rostock, Gertrudenstraße 9, 18057 Rostock, Germany
2Department of Pathology, University of Würzburg, Josef-Schneider Straße 2, 97080 Würzburg, Germany
3Proteome Center Rostock, University of Rostock, Schillingallee 69, 18055 Rostock, Germany

Received 5 July 2013; Accepted 16 December 2013; Published 30 January 2014

Academic Editor: Stephan M. Huber

Copyright © 2014 B. Weiss et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The treatment of Parkinson's disease by transplantation of dopaminergic (DA) neurons from human embryonic mesencephalic tissue is a promising approach. However, the origin of these cells causes major problems: availability and standardization of the graft. Therefore, the generation of unlimited numbers of DA neurons from various types of stem or progenitor cells has been brought into focus. A source for DA neurons might be conditionally immortalized progenitor cells. The temperature-sensitive immortalized cell line CSM14.1 derived from the mesencephalon of an embryonic rat has been used successfully for transplantation experiments. This cell line was analyzed by unbiased stereology of cell type specific marker proteins and 2D-gel electrophoresis followed by mass spectrometry to characterize the differentially expressed proteome. Undifferentiated CSM14.1 cells only expressed the stem cell marker nestin, whereas differentiated cells expressed GFAP or NeuN and tyrosine hydroxylase. An increase of the latter cells during differentiation could be shown. By using proteomics an explanation on the protein level was found for the observed changes in cell morphology during differentiation, when CSM14.1 cells possessed the morphology of multipolar neurons. The results obtained in this study confirm the suitability of CSM14.1 cells as an in vitro model for the study of neuronal and dopaminergic differentiation in rats.