Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 362725, 21 pages
http://dx.doi.org/10.1155/2014/362725
Review Article

Acute Kidney Injury by Radiographic Contrast Media: Pathogenesis and Prevention

1Nephrology Unit, Department of Health Sciences, “Magna Graecia” University, Campus “Salvatore Venuta”, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
2Nephology Unit, Department of Public Health, “Federico II” University, Via Pansini no. 5, 80131 Naples, Italy

Received 24 April 2014; Accepted 7 July 2014; Published 14 August 2014

Academic Editor: Alejandro Ferreiro

Copyright © 2014 Michele Andreucci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Andreucci, R. Solomon, and A. Tasanarong, “Side effects of radiographic contrast media: pathogenesis, risk factors, prevention,” in Side Effects of Radiographic Contrast Media, M. Andreucci, R. Solomon, and A. Tasanarong, Eds., Special Issue BioMed Research International, 2014. View at Google Scholar
  2. H. S. Thomsen and S. K. Morcos, “Contrast media and the kidney: european society of urogenital radiology (ESUR) guidelines,” The British Journal of Radiology, vol. 76, no. 908, pp. 513–518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Mehran and E. Nikolsky, “Contrast-induced nephropathy: definition, epidemiology, and patients at risk,” Kidney International. Supplement, no. 100, pp. S11–S15, 2006. View at Google Scholar · View at Scopus
  4. R. W. Katzberg and J. H. Newhouse, “Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe?” Radiology, vol. 256, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Levey, J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth, “A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation,” Annals of Internal Medicine, vol. 130, no. 6, pp. 461–470, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Levey, L. A. Stevens, C. H. Schmid et al., “A new equation to estimate glomerular filtration rate,” Annals of Internal Medicine, vol. 150, no. 9, pp. 604–612, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. W. Cockcroft and M. H. Gault, “Prediction of creatinine clearance from serum creatinine,” Nephron, vol. 16, no. 1, pp. 31–41, 1976. View at Publisher · View at Google Scholar · View at Scopus
  8. V. E. Andreucci, G. Fuiano, D. Russo, and M. Andreucci, “Vasomotor nephropathy in the elderly,” Nephrology Dialysis Transplantation, vol. 13, supplement 7, pp. 17–24, 1998. View at Google Scholar · View at Scopus
  9. V. E. Andreucci, G. Fuiano, P. Stanziale, and M. Andreucci, “Role of renal biopsy in the diagnosis and prognosis of acute renal failure,” Kidney International, Supplement, vol. 53, no. 66, pp. S91–S95, 1998. View at Google Scholar · View at Scopus
  10. T. G. Gleeson and S. Bulugahapitiya, “Contrast-induced nephropathy,” The American Journal of Roentgenology, vol. 183, no. 6, pp. 1673–1689, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. M. Curtis and A. Agarwal, “HOpe for contrast-induced acute kidney injury,” Kidney International, vol. 72, no. 8, pp. 907–909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Solomon, “Contrast-induced acute kidney injury: is there a risk after intravenous contrast?” Clinical Journal of the American Society of Nephrology, vol. 3, no. 5, pp. 1242–1243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. D. Weisbord and P. M. Palevsky, “Prevention of contrast-induced nephropathy with volume expansion,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 273–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. Bruce, A. Djamali, K. Shinki, S. J. Michel, J. P. Fine, and M. A. Pozniak, “Background fluctuation of kidney function versus contrast-induced nephrotoxicity,” The American Journal of Roentgenology, vol. 192, no. 3, pp. 711–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Mitchell, A. E. Jones, J. A. Tumlin, and J. A. Kline, “Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 1, pp. 4–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Davenport, S. Khalatbari, R. H. Cohan, J. R. Dillman, J. D. Myles, and J. H. Ellis, “Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate,” Radiology, vol. 268, no. 3, pp. 719–728, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. M. S. Davenport, S. Khalatbari, J. R. Dillman, R. H. Cohan, E. M. Caoili, and J. H. Ellis, “Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material,” Radiology, vol. 267, no. 1, pp. 94–105, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. R. J. McDonald, J. S. McDonald, J. P. Bida et al., “Intravenous contrast material-induced nephropathy: causal or coincident phenomenon?” Radiology, vol. 267, no. 1, pp. 106–118, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. J. S. McDonald, R. J. McDonald, J. Comin et al., “Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis,” Radiology, vol. 267, no. 1, pp. 119–128, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Rudnick and H. Feldman, “Contrast-induced nephropathy: what are the true clinical consequences?” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 263–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Lakhal, S. Ehrmann, A. Chaari et al., “Acute kidney injury network definition of contrast-induced nephropathy in the critically ill: incidence and outcome,” Journal of Critical Care, vol. 26, no. 6, pp. 593–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Fuiano, D. Mancuso, C. Indolfi et al., “Early detection of progressive renal dysfunction in patients with coronary artery disease,” Kidney International, vol. 68, no. 6, pp. 2773–2780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. J. Solomon, R. Mehran, M. K. Natarajan et al., “Contrast-induced nephropathy and long-term adverse events: cause and effect?” Clinical Journal of the American Society of Nephrology, vol. 4, no. 7, pp. 1162–1169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. J. Scanlon, D. P. Faxon, A. M. Audet et al., “ACC/AHA guidelines for coronary angiography: executive summary and recommendations. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography) developed in collaboration with the Society for Cardiac Angiography and Interventions,” Circulation, vol. 99, no. 17, pp. 2345–2357, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: Incidence, risk factors, and relationship to mortality,” American Journal of Medicine, vol. 103, no. 5, pp. 368–375, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. S. W. Murphy, B. J. Barrett, and P. S. Parfrey, “Contrast nephropathy,” Journal of the American Society of Nephrology, vol. 11, no. 1, pp. 177–182, 2000. View at Google Scholar · View at Scopus
  27. S. Detrenis, M. Meschi, S. Musini, and G. Savazzi, “Lights and shadows on the pathogenesis of contrast-induced nephropathy: state of the art,” Nephrology Dialysis Transplantation, vol. 20, no. 8, pp. 1542–1550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. M. Sendeski, “Pathophysiology of renal tissue damage by iodinated contrast media,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 5, pp. 292–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Sendeski, A. Patzak, T. L. Pallone, C. Cao, A. E. Persson, and P. B. Persson, “Iodixanol, constriction of medullary descending vasa recta, and risk for contrast medium-induced nephropathy,” Radiology, vol. 251, no. 3, pp. 697–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. J. Giaccia, M. C. Simon, and R. Johnson, “The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease,” Genes and Development, vol. 18, no. 18, pp. 2183–2194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Sabbatini, M. Santillo, A. Pisani et al., “Inhibition of Ras/ERK1/2 signaling protects against postischemic renal injury,” American Journal of Physiology: Renal Physiology, vol. 290, no. 6, pp. F1408–F1415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. N. Heyman, S. Rosen, M. Khamaisi, J. Idée, and C. Rosenberger, “Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy,” Investigative Radiology, vol. 45, no. 4, pp. 188–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Dawson, M. J. G. Harrison, and E. Weisblatt, “Effect of contrast media on red cell filtrability and morphology,” The British Journal of Radiology, vol. 56, no. 670, pp. 707–710, 1983. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Pisani, E. Riccio, M. Andreucci et al., “Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy,” BioMed Research International, vol. 2013, Article ID 868321, 6 pages, 2013. View at Publisher · View at Google Scholar
  35. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis,” Journal of Vascular Surgery, vol. 44, no. 2, pp. 383–391, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Pisani, M. Sabbatini, E. Riccio et al., “Effect of a recombinant manganese superoxide dismutase on prevention of contrast-induced acute kidney injury,” Clinical and Experimental Nephrology, pp. 1–8, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Gospos, N. Freudenberg, J. Staubesand, K. Mathias, and X. Papacharlampos, “The effect of contrast media on the aortic endothelium of rats,” Radiology, vol. 147, no. 3, pp. 685–688, 1983. View at Publisher · View at Google Scholar · View at Scopus
  39. S. N. Heyman, B. A. Clark, N. Kaiser et al., “Radiocontrast agents induce endothelin release in vivo and in vitro,” Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 58–65, 1992. View at Google Scholar · View at Scopus
  40. S. N. Heyman, S. Rosen, and C. Rosenberger, “Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 288–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Caiazza, L. Russo, M. Sabbatini, and D. Russo, “Hemodynamic and tubular changes induced by contrast media,” BioMed Research International, vol. 2014, Article ID 578974, 7 pages, 2014. View at Publisher · View at Google Scholar
  42. K. Hardiek, R. E. Katholi, V. Ramkumar, and C. Deitrick, “Proximal tubule cell response to radiographic contrast media,” The American Journal of Physiology: Renal Physiology, vol. 280, no. 1, pp. F61–F70, 2001. View at Google Scholar · View at Scopus
  43. M. C. Heinrich, M. K. Kuhlmann, A. Grgic, M. Heckmann, B. Kramann, and M. Uder, “Cytotoxic effects of ionic high-osmolar, nonionic monomeric, and nonionic iso-osmolar dimeric iodinated contrast media on renal tubular cells in vitro,” Radiology, vol. 235, no. 3, pp. 843–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Michael, T. Faga, A. Pisani et al., “Molecular mechanisms of renal cellular nephrotoxicity due to radiocontrast media,” BioMed Research International, vol. 2014, Article ID 249810, 10 pages, 2014. View at Publisher · View at Google Scholar
  45. M. Andreucci, A. Michael, C. Kramers et al., “Renal ischemia/reperfusion and ATP depletion/repletion in LLC-PK 1 cells result in phosphorylation of FKHR and FKHRL1,” Kidney International, vol. 64, no. 4, pp. 1189–1198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Andreucci, G. Fuiano, P. Presta et al., “Downregulation of cell survival signalling pathways and increased cell damage in hydrogen peroxide-treated human renal proximal tubular cells by alpha-erythropoietin,” Cell Proliferation, vol. 42, no. 4, pp. 554–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Andreucci, “Contrast media and nephrotoxicity: a molecular conundrum,” Giornale Italiano di Nefrologia, vol. 28, no. 4, p. 355, 2011. View at Google Scholar · View at Scopus
  48. M. Andreucci, G. Lucisano, T. Faga et al., “Differential activation of signaling pathways involved in cell death, survival and inflammation by radiocontrast media in human renal proximal tubular cells,” Toxicological Sciences, vol. 119, no. 2, pp. 408–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Andreucci, G. Fuiano, P. Presta et al., “Radiocontrast media cause dephosphorylation of Akt and downstream signaling targets in human renal proximal tubular cells,” Biochemical Pharmacology, vol. 72, no. 10, pp. 1334–1342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Andreucci, T. Faga, D. Russo et al., “Differential activation of signaling pathways by low-osmolar and iso-osmolar radiocontrast agents in human renal tubular cells,” Journal of Cellular Biochemistry, vol. 115, pp. 281–289, 2014. View at Google Scholar
  51. P. Dawson, J. Pitfield, and K. Skinnemoen, “Isomeric purity and supersaturation of iopamidol,” British Journal of Radiology, vol. 56, no. 670, pp. 711–713, 1983. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Andreucci, T. Faga, G. Lucisano et al., “Mycophenolic acid inhibits the phosphorylation of NF-κB and JNKs and causes a decrease in IL-8 release in H2O2-treated human renal proximal tubular cells,” Chemico-Biological Interactions, vol. 185, no. 3, pp. 253–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. A. Cunha and N. Schor, “Effects of gentamicin, lipopolysaccharide, and contrast media on immortalized proximal tubular cells,” Renal Failure, vol. 24, no. 5, pp. 655–658, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Peer, Z. Averbukh, S. Berman, D. Modai, M. Averbukh, and J. Weissgarten, “Contrast media augmented apoptosis of cultured renal mesangial, tubular, epithelial, endothelial, and hepatic cells,” Investigative Radiology, vol. 38, no. 3, pp. 177–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. J. A. Neyra, S. Shah, R. Mooney, G. Jacobsen, J. Yee, and J. E. Novak, “Contrast-induced acute kidney injury following coronary angiography: a cohort study of hospitalized patients with or without chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 28, no. 6, pp. 1463–1471, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. K. J. Hardiek, R. E. Katholi, R. S. Robbs, and C. E. Katholi, “Renal effects of contrast media in diabetic patients undergoing diagnostic or interventional coronary angiography,” Journal of Diabetes and Its Complications, vol. 22, no. 3, pp. 171–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. C. L. Manske, J. M. Sprafka, J. T. Strony, and Y. Wang, “Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography,” American Journal of Medicine, vol. 89, no. 5, pp. 615–620, 1990. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Khamaisi, I. Raz, V. Shilo et al., “Diabetes and radiocontrast media increase endothelin converting enzyme-1 in the kidney,” Kidney International, vol. 74, no. 1, pp. 91–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Pflueger, T. S. Larson, K. A. Nath, B. F. King, J. M. Gross, and F. G. Knox, “Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus,” Mayo Clinic Proceedings, vol. 75, no. 12, pp. 1275–1283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Pakfetrat, M. H. Nikoo, L. Malekmakan et al., “Comparison of risk factors for contrast-induced acute kidney injury between patients with and without diabetes,” Hemodialysis International, vol. 14, no. 4, pp. 387–392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. R. Rudnick, S. Goldfarb, and J. Tumlin, “Contrast-induced nephropathy: is the picture any clearer?” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 261–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Morabito, V. Pistolesi, G. Benedetti et al., “Incidence of contrast-induced acute kidney injury associated with diagnostic or interventional coronary angiography,” Journal of Nephrology, vol. 25, no. 6, pp. 1098–1107, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Kolonko, F. Kokot, and A. Wiȩcek, “Contrast-associated nephropathy: old clinical problem and new therapeutic perspectives,” Nephrology Dialysis Transplantation, vol. 13, no. 3, pp. 803–806, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. S. K. Morcos, “Contrast media-induced nephrotoxicity—questions and answers,” British Journal of Radiology, vol. 71, pp. 357–365, 1998. View at Google Scholar · View at Scopus
  65. R. K. Gupta, A. Kapoor, S. Tewari, N. Sinha, and R. K. Sharma, “Captopril for prevention of contrast-induced nephropathy in diabetic patients: a randomised study,” Indian Heart Journal, vol. 51, no. 5, pp. 521–526, 1999. View at Google Scholar · View at Scopus
  66. S. B. Duan, Y. H. Wang, F. Y. Liu et al., “The protective role of telmisartan against nephrotoxicity induced by X-ray contrast media in rat model,” Acta Radiologica, vol. 50, no. 7, pp. 754–759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Cirit, O. Toprak, M. Yesil et al., “Angiotensin-converting enzyme inhibitors as a risk factor for contrast-induced nephropathy,” Nephron: Clinical Practice, vol. 104, no. 1, pp. c20–c27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Kiski, W. Stepper, E. Brand, G. Breithardt, and H. Reinecke, “Impact of renin-angiotensin-aldosterone blockade by angiotensin-converting enzyme inhibitors or AT-1 blockers on frequency of contrast medium-induced nephropathy: a post-hoc analysis from the Dialysis-versus-Diuresis (DVD) trial,” Nephrology Dialysis Transplantation, vol. 25, no. 3, pp. 759–764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Y. Rim, H. Ro, W. C. Kang et al., “The effect of renin-angiotensin-aldosterone system blockade on contrast-induced acute kidney injury: a propensity-matched study,” The American Journal of Kidney Diseases, vol. 60, no. 4, pp. 576–582, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. Umruddin, K. Moe, and K. Superdock, “ACE inhibitor or angiotensin II receptor blocker use is a risk factor for contrast-induced nephropathy,” Journal of Nephrology, vol. 25, no. 5, pp. 776–781, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. M. A. C. Onuigbo and N. T. C. Onuigbo, “Does renin-angiotensin aldosterone system blockade exacerbate contrast-induced nephropathy in patients with chronic kidney disease? A prospective 50-month mayo clinic study,” Renal Failure, vol. 30, no. 1, pp. 67–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. J. L. Rosenstock, R. Bruno, J. K. Kim et al., “The effect of withdrawal of ACE inhibitors or angiotensin receptor blockers prior to coronary angiography on the incidence of contrast-induced nephropathy,” International Urology and Nephrology, vol. 40, no. 3, pp. 749–755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Andreucci, S. Federico, and V. E. Andreucci, “Edema and acute renal failure,” Seminars in Nephrology, vol. 21, no. 3, pp. 251–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. E. D. Bartels, G. C. Brun, A. Gammeltoft, and P. A. Gjorup, “Acute anuria following intravenous pyelography in a patient with myelomatosis,” Acta Medica Scandinavica, vol. 150, pp. 297–302, 1954. View at Google Scholar
  75. P. E. Perillie and H. O. Conn, “Acute renal failure after intravenous pyelography in plasma cell myeloma,” Journal of the American Medical Association, vol. 167, pp. 2186–2189, 1958. View at Google Scholar
  76. W. Scheitlin, G. Martz, and U. Brunner, “Acute renal failure following intravenous pyelography in multiple myeloma,” Schweizerische Medizinische Wochenschrift, vol. 90, pp. 84–87, 1960. View at Google Scholar · View at Scopus
  77. G. H. Myers Jr. and D. M. Witten, “Acute renal failure after excretory urography in multiple myeloma,” The American Journal of Roentgenology, Radium Therapy, and Nuclear Medicine, vol. 113, no. 3, pp. 583–588, 1971. View at Publisher · View at Google Scholar · View at Scopus
  78. D. J. Cohen, W. H. Sherman, E. F. Osserman, and G. B. Appel, “Acute renal failure in patients with multiple myeloma,” American Journal of Medicine, vol. 76, no. 2, pp. 247–256, 1984. View at Publisher · View at Google Scholar · View at Scopus
  79. C. S. McCarthy and J. A. Becker, “Multiple myeloma and contrast media,” Radiology, vol. 183, no. 2, pp. 519–521, 1992. View at Publisher · View at Google Scholar · View at Scopus
  80. J. K. Pahade, C. A. LeBedis, V. D. Raptopoulos et al., “Incidence of contrast-induced nephropathy in patients with multiple myeloma undergoing contrast-enhanced CT,” American Journal of Roentgenology, vol. 196, no. 5, pp. 1094–1101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Andreucci, R. Solomon, and A. Tasanarong, “Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention,” BioMed Research International, vol. 2014, Article ID 741018, 20 pages, 2014. View at Publisher · View at Google Scholar
  82. P. Aspelin, P. Aubry, S. G. Fransson, R. Strasser, R. Willenbrock, and K. J. Berg, “Nephrotoxic effects in high-risk patients undergoing angiography,” The New England Journal of Medicine, vol. 348, no. 6, pp. 491–499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. R. W. Katzberg, “Urography into the 21st century: new contrast media, renal handling, imaging characteristics, and nephrotoxicity,” Radiology, vol. 204, no. 2, pp. 297–312, 1997. View at Publisher · View at Google Scholar · View at Scopus
  84. C. P. Taliercio, R. E. Vlietstra, D. M. Ilstrup et al., “A randomized comparison of the nephrotoxicity of iopamidol and diatrizoate in high risk patients undergoing cardiac angiography,” Journal of the American College of Cardiology, vol. 17, no. 2, pp. 384–390, 1991. View at Publisher · View at Google Scholar · View at Scopus
  85. B. J. Barrett and E. J. Carlisle, “Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media,” Radiology, vol. 188, no. 1, pp. 171–178, 1993. View at Publisher · View at Google Scholar · View at Scopus
  86. B. J. Barrett, “Contrast nephrotoxicity,” Journal of the American Society of Nephrology, vol. 5, no. 2, pp. 125–137, 1994. View at Google Scholar · View at Scopus
  87. N. Chalmers and R. W. Jackson, “Comparison of iodixanol and iohexol in renal impairment,” British Journal of Radiology, vol. 72, pp. 701–703, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Dong, Z. Jiao, T. Liu, F. Guo, and G. Li, “Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomized controlled trials,” Journal of Nephrology, vol. 25, no. 3, pp. 290–301, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. M. C. Heinrich, L. Häberle, V. Müller, W. Bautz, and M. Uder, “Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials,” Radiology, vol. 250, no. 1, pp. 68–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. M. J. Kuhn, N. Chen, D. V. Sahani et al., “The PREDICT study: A randomized double-blind comparison of contrast-induced nephropathy after low- or isoosmolar contrast agent exposure,” American Journal of Roentgenology, vol. 191, no. 1, pp. 151–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. R. J. Solomon, M. K. Natarajan, S. Doucet et al., “Cardiac angiography in renally impaired patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease,” Circulation, vol. 115, no. 25, pp. 3189–3196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Reed, P. Meier, U. U. Tamhane, K. B. Welch, M. Moscucci, and H. S. Gurm, “The relative renal safety of iodixanol compared with low-osmolar contrast media. A meta-analysis of randomized controlled trials,” Cardiovascular Interventions, vol. 2, no. 7, pp. 645–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. L. Bolognese, G. Falsini, C. Schwenke et al., “Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (from the Contrast Media and Nephrotoxicity Following Primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] Trial),” American Journal of Cardiology, vol. 109, no. 1, pp. 67–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. E. Seeliger, D. C. Lenhard, and P. B. Persson, “Contrast media viscosity versus osmolality in kidney injury: lessons from animal studies,” BioMed Research International, vol. 2014, Article ID 358136, 15 pages, 2014. View at Publisher · View at Google Scholar
  95. G. Jost, H. Pietsch, J. Sommer et al., “Retention of iodine and expression of biomarkers for renal damage in the kidney after application of iodinated contrast media in rats,” Investigative Radiology, vol. 44, no. 2, pp. 114–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Dyvik, K. Dyrstad, and A. Tronstad, “Relationship between viscosity and determined injection pressure in angiography catheters for common roentgen contrast media,” Acta Radiologica. Supplementum, vol. 399, pp. 43–49, 1995. View at Google Scholar · View at Scopus
  97. J. Ueda, A. Nygren, P. Hansell, and H. R. Ulfendahl, “Effect of intravenous contrast media on proximal and distal tubular hydrostatic pressure in the rat kidney,” Acta Radiologica, vol. 34, no. 1, pp. 83–87, 1993. View at Publisher · View at Google Scholar · View at Scopus
  98. V. E. Andreucci, D. Russo, B. Cianciaruso, and M. Andreucci, “Some sodium, potassium and water changes in the elderly and their treatment,” Nephrology Dialysis Transplantation, vol. 11, supplement 9, pp. 9–17, 1996. View at Google Scholar · View at Scopus
  99. E. Lancelot, J. Idée, C. Laclédère, R. Santus, and C. Corot, “Effects of two dimeric iodinated contrast media on renal medullary blood perfusion and oxygenation in dogs,” Investigative Radiology, vol. 37, no. 7, pp. 368–375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Ueda, A. Nygren, M. Sjöquist, E. Jacobsson, H. R. Ulfendahl, and Y. Araki, “Iodine concentrations in the rat kidney measured by x-ray microanalysis: comparison of concentrations and viscosities in the proximal tubules and renal pelvis after intravenous injections of contrast media,” Acta Radiologica, vol. 39, no. 1, pp. 90–95, 1998. View at Google Scholar · View at Scopus
  101. E. Seeliger, K. Becker, M. Ladwig, T. Wronski, P. B. Persson, and B. Flemming, “Up to 50-fold increase in urine viscosity with iso-osmolar contrast media in the rat,” Radiology, vol. 256, no. 2, pp. 406–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Jost, P. Lengsfeld, D. C. Lenhard, H. Pietsch, J. Hütter, and M. A. Sieber, “Viscosity of iodinated contrast agents during renal excretion,” European Journal of Radiology, vol. 80, no. 2, pp. 373–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Ueda, A. Nygren, P. Hansell, and U. Erikson, “Influence of contrast media on single nephron glomerular filtration rate in rat kidney: a comparison between diatrizoate, iohexol, ioxaglate, and iotrolan,” Acta Radiologica, vol. 33, no. 6, pp. 596–599, 1992. View at Google Scholar · View at Scopus
  104. A. S. Gomes, J. D. Baker, V. Martin-Paredero et al., “Acute renal dysfunction after major arteriography,” The American Journal of Roentgenology, vol. 145, no. 6, pp. 1249–1253, 1985. View at Publisher · View at Google Scholar · View at Scopus
  105. P. McCullough, “Outcomes of contrast-induced nephropathy: experience in patients undergoing cardiovascular intervention,” Catheterization and Cardiovascular Interventions, vol. 67, no. 3, pp. 335–343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Harkonen and C. Kjellstrand, “Contrast nephropathy,” American Journal of Nephrology, vol. 1, no. 2, pp. 69–77, 1981. View at Publisher · View at Google Scholar · View at Scopus
  107. K. Kato, N. Sato, T. Yamamoto, Y. Iwasaki, K. Tanaka, and K. Mizuno, “Valuable markers for contrast-induced nephropathy in patients undergoing cardiac catheterization,” Circulation Journal, vol. 72, no. 9, pp. 1499–1505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Nunag, M. Brogan, and R. Garrick, “Mitigating contrast-induced acute kidney injury associated with cardiac catheterization,” Cardiology in Review, vol. 17, no. 6, pp. 263–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. L. Byrd and R. L. Sherman, “Radiocontrast-induced acute renal failure: a clinical and pathophysiologic review,” Medicine, vol. 58, no. 3, pp. 270–279, 1979. View at Publisher · View at Google Scholar · View at Scopus
  110. G. A. Khoury, J. C. Hopper, Z. Varghese et al., “Nephrotoxicity of ionic and non-ionic contrast material in digital vascular imaging and selective renal arteriography,” British Journal of Radiology, vol. 56, no. 669, pp. 631–635, 1983. View at Publisher · View at Google Scholar · View at Scopus
  111. R. D. Moore, E. P. Steinberg, N. R. Powe et al., “Nephrotoxicity of high-osmolality versus low-osmolality contrast media: randomized clinical trial,” Radiology, vol. 182, no. 3, pp. 649–655, 1992. View at Publisher · View at Google Scholar · View at Scopus
  112. D. R. Campbell, B. K. Flemming, W. F. Mason, S. A. Jackson, D. J. Hirsch, and K. J. MacDonald, “A comparative study of the nephrotoxicity of iohexol, iopamidol and ioxaglate in peripheral angiography,” Canadian Association of Radiologists Journal, vol. 41, no. 3, pp. 133–137, 1990. View at Google Scholar · View at Scopus
  113. E. Nikolsky, R. Mehran, Z. Lasic et al., “Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions,” Kidney International, vol. 67, no. 2, pp. 706–713, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. T. S. Ahuja, N. Niaz, and M. Agraharkar, “Contrast-induced nephrotoxicity in renal allograft recipients,” Clinical Nephrology, vol. 54, no. 1, pp. 11–14, 2000. View at Google Scholar · View at Scopus
  115. D. Fliser, M. Laville, A. Covic et al., “A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy,” Nephrology Dialysis Transplantation, vol. 27, no. 12, pp. 4263–4272, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. K. R. Thomson and D. K. Varma, “Safe use of radiographic contrast media,” Australian Prescriber, vol. 33, no. 1, pp. 19–22, 2010. View at Google Scholar · View at Scopus
  117. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group, “KDIGO clinical practice guideline for acute kidney injury,” Kidney International, vol. 2, pp. 1–138, 2012. View at Google Scholar
  118. R. G. Cigarroa, R. A. Lange, R. H. Williams, and L. D. Hillis, “Dosing of contrast material to prevent contrast nephropathy in patients with renal disease,” The American Journal of Medicine, vol. 86, no. 6, pp. 649–652, 1989. View at Publisher · View at Google Scholar · View at Scopus
  119. W. K. Laskey, C. Jenkins, F. Selzer et al., “Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention,” Journal of the American College of Cardiology, vol. 50, no. 7, pp. 584–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. H. S. Gurm, S. R. Dixon, D. E. Smith et al., “Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions,” Journal of the American College of Cardiology, vol. 58, no. 9, pp. 907–914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. J. J. Keaney, C. M. Hannon, and P. T. Murray, “Contrast-induced acute kidney injury: how much contrast is safe?” Nephrology Dialysis Transplantation, vol. 28, no. 6, pp. 1376–1383, 2013. View at Publisher · View at Google Scholar · View at Scopus
  122. C. Mueller, “Prevention of contrast-induced nephropathy with volume supplementation,” Kidney international. Supplement, no. 100, pp. S16–S19, 2006. View at Google Scholar · View at Scopus
  123. C. E. A. Balemans, L. J. M. Reichert, B. I. H. van Schelven, J. A. J. G. van den Brand, and J. F. M. Wetzels, “Epidemiology of contrast material-induced nephropathy in the era of hydration,” Radiology, vol. 263, no. 3, pp. 706–713, 2012. View at Publisher · View at Google Scholar · View at Scopus
  124. H. S. Thomsen, “Guidelines for contrast media from the European Society of Urogenital Radiology,” American Journal of Roentgenology, vol. 181, no. 6, pp. 1463–1471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Solomon and H. L. Dauerman, “Contrast-induced acute kidney injury,” Circulation, vol. 122, no. 23, pp. 2451–2455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. G. J. Merten, W. P. Burgess, L. V. Gray et al., “Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial,” Journal of the American Medical Association, vol. 291, no. 19, pp. 2328–2334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Masuda, T. Yamada, T. Mine et al., “Comparison of usefulness of sodium bicarbonate versus sodium chloride to prevent contrast-induced nephropathy in patients undergoing an emergent coronary procedure,” The American Journal of Cardiology, vol. 100, no. 5, pp. 781–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Tamura, Y. Goto, K. Miyamoto et al., “Efficacy of single-bolus administration of sodium bicarbonate to prevent contrast-induced nephropathy in patients with mild renal insufficiency undergoing an elective coronary procedure,” The American Journal of Cardiology, vol. 104, no. 7, pp. 921–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. S. D. Navaneethan, S. Singh, S. Appasamy, R. E. Wing, and A. R. Sehgal, “Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis,” American Journal of Kidney Diseases, vol. 53, no. 4, pp. 617–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. E. A. J. Hoste, J. J. De Waele, S. A. Gevaert, S. Uchino, and J. A. Kellum, “Sodium bicarbonate for prevention of contrast-induced acute kidney injury: A systematic review and meta-analysis,” Nephrology Dialysis Transplantation, vol. 25, no. 3, pp. 747–758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. M. Joannidis, M. Schmid, and C. J. Wiedermann, “Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis,” Wiener Klinische Wochenschrift, vol. 120, no. 23-24, pp. 742–748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. M. Pakfetrat, M. H. Nikoo, L. Malekmakan et al., “A comparison of sodium bicarbonate infusion versus normal saline infusion and its combination with oral acetazolamide for prevention of contrast-induced nephropathy: A randomized, double-blind trial,” International Urology and Nephrology, vol. 41, no. 3, pp. 629–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Jang, H. Jin, J. Seo et al., “Sodium bicarbonate therapy for the prevention of contrast-induced acute kidney injury—a systematic review and meta-analysis,” Circulation Journal, vol. 76, no. 9, pp. 2255–2265, 2012. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Zoungas, T. Ninomiya, R. Huxley et al., “Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy,” Annals of Internal Medicine, vol. 151, no. 9, pp. 631–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. S. S. Brar, S. Hiremath, G. Dangas, R. Mehran, S. K. Brar, and M. B. Leon, “Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 10, pp. 1584–1592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. L. Shavit, R. Korenfeld, M. Lifschitz, A. Butnaru, and I. Slotki, “Sodium bicarbonate versus sodium chloride and oral N-acetylcysteine for the prevention of contrast-induced nephropathy in advanced chronic kidney disease,” Journal of Interventional Cardiology, vol. 22, no. 6, pp. 556–563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Vasheghani-Farahani, G. Sadigh, S. E. Kassaian et al., “Sodium bicarbonate in preventing contrast nephropathy in patients at risk for volume overload: a randomized controlled trial,” Journal of Nephrology, vol. 23, no. 2, pp. 216–223, 2010. View at Google Scholar · View at Scopus
  138. A. M. From, B. J. Bartholmai, A. W. Williams, S. S. Cha, A. Pflueger, and F. S. McDonald, “Sodium bicarbonate is associated with an increased incidence of contrast nephropathy: a retrospective cohort study of 7977 patients at Mayo Clinic,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 10–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. H. C. Lee, S. H. Sheu, I. H. Liu et al., “Impact of short-duration administration of N-acetylcysteine, probucol and ascorbic acid on contrast-induced cytotoxicity,” Journal of Nephrology, vol. 25, no. 1, pp. 56–62, 2012. View at Publisher · View at Google Scholar · View at Scopus
  140. R. Safirstein, L. Andrade, and J. M. Vieira, “Acetylcysteine and nephrotoxic effects of radiographic contrast agents—a new use for an old drug,” The New England Journal of Medicine, vol. 343, no. 3, pp. 210–212, 2000. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Tepel, M. van der Giet, C. Schwarzfeld, U. Laufer, D. Liermann, and W. Zidek, “Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine,” The New England Journal of Medicine, vol. 343, no. 3, pp. 180–184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  142. C. S. R. Baker, A. Wragg, S. Kumar, R. de Palma, L. R. I. Baker, and C. J. Knight, “A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study,” Journal of the American College of Cardiology, vol. 41, no. 12, pp. 2114–2118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  143. C. Briguori, A. Colombo, A. Violante et al., “Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity,” European Heart Journal, vol. 25, no. 3, pp. 206–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Jo, B. Koo, J. Park et al., “N-acetylcysteine versus AScorbic acid for Preventing contrast-Induced nephropathy in patients with renal insufficiency undergoing coronary angiography. NASPI study-a prospective randomized controlled trial,” American Heart Journal, vol. 157, no. 3, pp. 576–583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. J. D. Durham, C. Caputo, J. Dokko et al., “A randomized controlled trial of N-acetylcysteine to prevent contrast nephropathy in cardiac angiography,” Kidney International, vol. 62, no. 6, pp. 2202–2207, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Allaqaband, R. Tumuluri, A. M. Malik et al., “Prospective randomized study of N-acetylcysteine, fenoldopam, and saline for prevention of radiocontrast-induced nephropathy,” Catheterization and Cardiovascular Interventions, vol. 57, no. 3, pp. 279–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  147. I. Goldenberg, M. Shechter, S. Matetzky et al., “Oral acetylcysteine as an adjunct to saline hydration for the prevention of contrast-induced nephropathy following coronary angiography: a randomized controlled trial and review of the current literature,” European Heart Journal, vol. 25, no. 3, pp. 212–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  148. L. C. Coyle, A. Rodriguez, R. E. Jeschke, A. Simon-Lee, K. C. Abbott, and A. J. Taylor, “Acetylcysteine In Diabetes (AID): a randomized study of acetylcysteine for the prevention of contrast nephropathy in diabetics,” The American Heart Journal, vol. 151, no. 5, pp. 1032.e9–1032.e12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. F. Ferrario, M. T. Barone, G. Landoni et al., “Acetylcysteine and non-ionic isosmolar contrast-induced nephropathy—a randomized controlled study,” Nephrology Dialysis Transplantation, vol. 24, no. 10, pp. 3103–3107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. N. Pannu, B. Manns, H. Lee, and M. Tonelli, “Systematic review of the impact of N-acetylcysteine on contrast nephropathy,” Kidney International, vol. 65, no. 4, pp. 1366–1374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. H. S. Gurm, D. E. Smith, O. Berwanger et al., “Contemporary use and effectiveness of n-acetylcysteine in preventing contrast-induced nephropathy among patients undergoing percutaneous coronary intervention,” JACC: Cardiovascular Interventions, vol. 5, no. 1, pp. 98–104, 2012. View at Publisher · View at Google Scholar · View at Scopus
  152. K. Spargias, E. Alexopoulos, S. Kyrzopoulos et al., “Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention,” Circulation, vol. 110, no. 18, pp. 2837–2842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Alexopoulos, K. Spargias, S. Kyrzopoulos et al., “Contrast-induced acute kidney injury in patients with renal dysfunction undergoing a coronary procedure and receiving non-ionic low-osmolar versus iso-osmolar contrast media,” American Journal of the Medical Sciences, vol. 339, no. 1, pp. 25–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. U. Sadat, A. Usman, J. H. Gillard, and J. R. Boyle, “Does ascorbic acid protect against contrast-induced acute kidney injury in patients undergoing coronary angiography: a systematic review with meta-analysis of randomized, controlled trials,” Journal of the American College of Cardiology, vol. 62, pp. 2167–2175, 2013. View at Google Scholar
  155. A. Boscheri, C. Weinbrenner, B. Botzek, K. Reynen, E. Kuhlisch, and R. H. Strasser, “Failure of ascorbic acid to prevent contrast-media induced nephropathy in patients with renal dysfunction,” Clinical Nephrology, vol. 68, no. 5, pp. 279–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  156. A. Tasanarong, A. Vohakiat, P. Hutayanon, and D. Piyayotai, “New strategy of α-and γ-tocopherol to prevent contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures,” Nephrology Dialysis Transplantation, vol. 28, no. 2, pp. 337–344, 2013. View at Publisher · View at Google Scholar · View at Scopus
  157. L. Kabasakal, A. Ö. Şehirli, Ş. Çetinel, E. Cikler, N. Gedik, and G. Şener, “Mesna (2-mercaptoethane sulfonate) prevents ischemia/reperfusion induced renal oxidative damage in rats,” Life Sciences, vol. 75, no. 19, pp. 2329–2340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  158. U. Ludwig, M. K. Riedel, M. Backes, A. Imhof, R. Muche, and F. Keller, “MESNA (sodium 2-mercaptoethanesulfonate) for prevention of contrast medium-induced nephrotoxicity—controlled trial,” Clinical Nephrology, vol. 75, no. 4, pp. 302–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. O. Toprak, M. Cirit, M. Tanrisev et al., “Preventive effect of nebivolol on contrast-induced nephropathy in rats,” Nephrology Dialysis Transplantation, vol. 23, no. 3, pp. 853–859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. Ö. Günebakmaz, M. G. Kaya, F. Koc et al., “Does nebivolol prevent contrast-induced nephropathy in humans?” Clinical Cardiology, vol. 35, no. 4, pp. 250–254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Andreucci, “[Statins in CIN: a problem at least partly solved?],” Giornale Italiano di Nefrologia, vol. 30, no. 3, 2013. View at Google Scholar
  162. S. Khanal, N. Attallah, D. E. Smith et al., “Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions,” American Journal of Medicine, vol. 118, no. 8, pp. 843–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. G. Patti, A. Nusca, M. Chello et al., “Usefulness of statin pretreatment to prevent contrast-induced nephropathy and to improve long-term outcome in patients undergoing percutaneous coronary intervention,” American Journal of Cardiology, vol. 101, no. 3, pp. 279–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. B. C. Zhang, W. M. Li, and Y. W. Xu, “High-dose statin pretreatment for the prevention of contrast-induced nephropathy: a meta-analysis,” Canadian Journal of Cardiology, vol. 27, no. 6, pp. 851–858, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. M. Leoncini, A. Toso, M. Maioli, F. Tropeano, and F. Bellandi, “Statin treatment before percutaneous cononary intervention,” Journal of Thoracic Disease, vol. 5, no. 3, pp. 335–342, 2013. View at Publisher · View at Google Scholar · View at Scopus
  166. M. Sabbatini, A. Pisani, F. Uccello et al., “Atorvastatin improves the course of ischemic acute renal failure in aging rats,” Journal of the American Society of Nephrology, vol. 15, no. 4, pp. 901–909, 2004. View at Publisher · View at Google Scholar · View at Scopus
  167. D. Yang, S. Lin, L. Wei, and W. Shang, “Effects of short- and long-term hypercholesterolemia on contrast-induced acute kidney injury,” American Journal of Nephrology, vol. 35, no. 1, pp. 80–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  168. K. E. Al-Otaibi, A. M. Al Elaiwi, M. Tariq, and A. K. Al-Asmari, “Simvastatin attenuates contrast-induced nephropathy through modulation of oxidative stress, proinflammatory myeloperoxidase, and nitric oxide,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 831748, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  169. C. Quintavalle, D. Fiore, F. de Micco et al., “Impact of a high loading dose of atorvastatin on contrast-induced acute kidney injury,” Circulation, vol. 126, no. 25, pp. 3008–3016, 2012. View at Publisher · View at Google Scholar · View at Scopus
  170. Y. Han, G. Zhu, L. Han et al., “Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease,” Journal of the American College of Cardiology, vol. 63, no. 1, pp. 62–70, 2014. View at Publisher · View at Google Scholar
  171. M. Leoncini, A. Toso, M. Maioli, F. Tropeano, S. Villani, and F. Bellandi, “Early high-dose rosuvastatin for contrast-induced nephropathy prevention in acute coronary syndrome: results from the PRATO-ACS study (protective effect of rosuvastatin and antiplatelet therapy on contrast-induced acute kidney injury and myocardial damage in patients with Acute Coronary Syndrome),” Journal of the American College of Cardiology, vol. 63, pp. 71–79, 2014. View at Google Scholar
  172. S. Yoshida, H. Kamihata, S. Nakamura et al., “Prevention of contrast-induced nephropathy by chronic pravastatin treatment in patients with cardiovascular disease and renal insufficiency,” Journal of Cardiology, vol. 54, no. 2, pp. 192–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. M. A. Muñoz, P. R. Maxwell, K. Green, D. W. Hughes, and R. L. Talbert, “Pravastatin versus simvastatin for prevention of contrast-induced nephropathy,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 16, no. 3-4, pp. 376–379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  174. S. Acikel, H. Muderrisoglu, A. Yildirir et al., “Prevention of contrast-induced impairment of renal function by short-term or long-term statin therapy in patients undergoing elective coronary angiography,” Blood Coagulation and Fibrinolysis, vol. 21, no. 8, pp. 750–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. G. Patti, E. Ricottini, A. Nusca et al., “Short-term, high-dose atorvastatin pretreatment to prevent contrast-induced nephropathy in patients with acute coronary syndromes undergoing percutaneous coronary intervention (from the ARMYDA-CIN [atorvastatin for reduction of myocardial damage during angioplasty-contrast-induced nephropathy] trial,” American Journal of Cardiology, vol. 108, no. 1, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  176. F. Ribichini, A. Gambaro, M. Pighi et al., “Effects of prednisone on biomarkers of tubular damage induced by radiocontrast in interventional cardiology,” Journal of Nephrology, vol. 26, no. 3, pp. 586–593, 2013. View at Publisher · View at Google Scholar · View at Scopus
  177. G. Marenzi, C. Ferrari, I. Marana et al., “Prevention of contrast nephropathy by furosemide with matched hydration: the MYTHOS (induced diuresis with matched hydration compared to standard hydration for contrast induced nephropathy prevention) trial,” JACC: Cardiovascular Interventions, vol. 5, no. 1, pp. 90–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  178. R. Solomon, C. Werner, D. Mann, J. D'Elia, and P. Silva, “Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents,” New England Journal of Medicine, vol. 331, no. 21, pp. 1416–1420, 1994. View at Publisher · View at Google Scholar · View at Scopus
  179. J. M. Weinstein, S. Heyman, and M. Brezis, “Potential deleterious effect of furosemide in radiocontrast nephropathy,” Nephron, vol. 62, no. 4, pp. 413–415, 1992. View at Publisher · View at Google Scholar · View at Scopus
  180. B. R. C. Kurnik, R. L. Allgren, F. C. Center, R. J. Solomon, E. R. Bates, and L. S. Weisberg, “Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy,” American Journal of Kidney Diseases, vol. 31, no. 4, pp. 674–680, 1998. View at Publisher · View at Google Scholar · View at Scopus
  181. D. Yang, R. Jia, and J. Tan, “Na+/Ca2+ exchange inhibitor, KB-R7943, attenuates contrast-induced acute kidney injury,” Journal of Nephrology, vol. 26, pp. 877–885, 2013. View at Google Scholar
  182. H.-. Neumayer, W. Junge, A. Kufner, and A. Wenning, “Prevention of radiocontrast-media-induced nephrotoxicity by the calcium channel blocker nitrendipine: a prospective randomised clinical trial,” Nephrology Dialysis Transplantation, vol. 4, no. 12, pp. 1030–1036, 1989. View at Google Scholar · View at Scopus
  183. D. Russo, A. Testa, L. D. Volpe, and G. Sansone, “Randomised prospective study on renal effects of two different contrast media in humans: protective role of a calcium channel blocker,” Nephron, vol. 55, no. 3, pp. 254–257, 1990. View at Publisher · View at Google Scholar · View at Scopus
  184. B. Spangberg-Viklund, J. Berglund, T. Nikonoff, P. Nyberg, T. Skau, and R. Larsson, “Does prophylactic treatment with felodipine, a calcium antagonist, prevent low-osmolar contrast-induced renal dysfunction in hydrated diabetic and nondiabetic patients with normal or moderately reduced renal function?” Scandinavian Journal of Urology and Nephrology, vol. 30, no. 1, pp. 63–68, 1996. View at Publisher · View at Google Scholar · View at Scopus
  185. C. M. Erley, S. H. Duda, S. Schlepckow et al., “Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application,” Kidney International, vol. 45, no. 5, pp. 1425–1431, 1994. View at Publisher · View at Google Scholar · View at Scopus
  186. C. M. Erley, S. H. Duda, D. Rehfuss et al., “Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline,” Nephrology Dialysis Transplantation, vol. 14, no. 5, pp. 1146–1149, 1999. View at Publisher · View at Google Scholar · View at Scopus
  187. R. E. Katholi, G. J. Taylor, W. P. McCann et al., “Nephrotoxicity from contrast media: attenuation with theophylline,” Radiology, vol. 195, no. 1, pp. 17–22, 1995. View at Publisher · View at Google Scholar · View at Scopus
  188. W. Huber, K. Ilgmann, M. Page et al., “Effect of theophylline on contrast material-induced nephropathy in patients with chronic renal insufficiency: controlled, randomized, double-blinded study,” Radiology, vol. 223, no. 3, pp. 772–779, 2002. View at Publisher · View at Google Scholar · View at Scopus
  189. A. S. Abizaid, C. E. Clark, G. S. Mintz et al., “Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with preexisting renal insufficiency,” American Journal of Cardiology, vol. 83, no. 2, pp. 260–263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  190. N. W. Shammas, M. J. Kapalis, M. Harris, D. McKinney, and E. P. Coyne, “Aminophylline does not protect against radiocontrast nephropathy in patients undergoing percutaneous angiographic procedures,” Journal of Invasive Cardiology, vol. 13, no. 11, pp. 738–740, 2001. View at Google Scholar · View at Scopus
  191. S. S. Hans, B. A. Hans, R. Dhillon, C. Dmuchowski, and J. Glover, “Effect of dopamine on renal function after arteriography in patients with pre-existing renal insufficiency,” The American Surgeon, vol. 64, no. 5, pp. 432–436, 1998. View at Google Scholar · View at Scopus
  192. A. A. Chamsuddin, K. J. Kowalik, H. Bjarnason et al., “Using a dopamine type 1A receptor agonist in high-risk patients to ameliorate contrast-associated nephropathy,” The American Journal of Roentgenology, vol. 179, no. 3, pp. 591–596, 2002. View at Publisher · View at Google Scholar · View at Scopus
  193. A. S. Kini, C. A. Mitre, M. Kamran et al., “Changing trends in incidence and predictors of radiographic contrast nephropathy after percutaneous coronary intervention with use of fenoldopam,” American Journal of Cardiology, vol. 89, no. 8, pp. 999–1002, 2002. View at Publisher · View at Google Scholar · View at Scopus
  194. M. Gare, Y. S. Haviv, A. Ben-Yehuda et al., “The renal effect of low-dose dopamine in high-risk patients undergoing coronary angiography,” Journal of the American College of Cardiology, vol. 34, no. 6, pp. 1682–1688, 1999. View at Publisher · View at Google Scholar · View at Scopus
  195. G. W. Stone, P. A. McCullough, J. A. Tumlin et al., “Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial,” Journal of the American Medical Association, vol. 290, no. 17, pp. 2284–2291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  196. A. Wang, T. Holcslaw, T. M. Bashore et al., “Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism,” Kidney International, vol. 57, no. 4, pp. 1675–1680, 2000. View at Publisher · View at Google Scholar · View at Scopus
  197. J. Koch, J. Plum, B. Grabensee, and U. Mödder, “Prostaglandin E1: a new agent for the prevention of renal dysfunction in high risk patients caused by radiocontrast media?” Nephrology Dialysis Transplantation, vol. 15, no. 1, pp. 43–49, 2000. View at Google Scholar · View at Scopus
  198. H. I. Miller, A. Dascalu, T. A. Rassin, Y. Wollman, T. Chernichowsky, and A. Iaina, “Effects of an acute dose of L-Arginine during coronary angiography in patients with chronic renal failure: a randomized, parallel, double-blind clinical trial,” American Journal of Nephrology, vol. 23, no. 2, pp. 91–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  199. T. Lehnert, E. Keller, K. Gondolf, T. Schäffner, H. Pavenstädt, and P. Schollmeyer, “Effect of haemodialysis after contrast medium administration in patients with renal insufficiency,” Nephrology Dialysis Transplantation, vol. 13, no. 2, pp. 358–362, 1998. View at Publisher · View at Google Scholar · View at Scopus
  200. R. Schindler, C. Stahl, S. Venz, K. Ludat, W. Krause, and U. Frei, “Removal of contrast media by different extracorporeal treatments,” Nephrology Dialysis Transplantation, vol. 16, no. 7, pp. 1471–1474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  201. B. Vogt, P. Ferrari, C. Schönholzer et al., “Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful,” American Journal of Medicine, vol. 111, no. 9, pp. 692–698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  202. V. L. M. Esnault, “Radiocontrast media-induced nephrotoxicity in patients with renal failure: rationale for a new double-blind, prospective, randomized trial testing calcium channel antagonists,” Nephrology Dialysis Transplantation, vol. 17, no. 8, pp. 1362–1364, 2002. View at Publisher · View at Google Scholar · View at Scopus