Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 362738, 8 pages
http://dx.doi.org/10.1155/2014/362738
Review Article

A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

1Department of Mathematics, Shanghai University, Shanghai 200444, China
2Department of Computer Science, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China

Received 3 December 2013; Revised 29 January 2014; Accepted 29 January 2014; Published 6 March 2014

Academic Editor: Jean X. Gao

Copyright © 2014 Shan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Barrett and R. Edgar, “Gene expression omnibus: microarray data storage, submission, retrieval, and analysis,” Methods in Enzymology, vol. 411, pp. 352–369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. G. R. Abecasis, A. Auton, L. D. Brooks et al., “An integrated map of genetic variation from 1, 092 human genomes,” Nature, vol. 491, no. 7422, pp. 56–65, 2012. View at Google Scholar
  3. T. R. Golub, D. K. Slonim, P. Tamayo et al., “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,” Science, vol. 286, no. 5439, pp. 531–527, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Ramaswamy, P. Tamayo, R. Rifkin et al., “Multiclass cancer diagnosis using tumor gene expression signatures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 15149–15154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Q. Liu, Z. P. Liu, J. K. Hao et al., “Identifying dysregulated pathways in cancers from pathway interaction networks,” BMC Bioinformatics, vol. 13, article 126, 2012. View at Google Scholar
  6. G. R. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble, “Kernel-based data fusion and its application to protein function prediction in yeast,” Pacific Symposium on Biocomputing, pp. 300–311, 2004. View at Google Scholar · View at Scopus
  7. D. Barh, K. Gupta, N. Jain et al., “Conserved host-pathogen PPIs. Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target in C. pseudotuberculosis, C. diphtheriae, M. tuberculosis, C. ulcerans, Y. pestis, and E. coli targeted by Piper betel compounds,” Integrative Biology, vol. 5, no. 3, pp. 495–509, 2013. View at Google Scholar
  8. M. Campillos, M. Kuhn, A.-C. Gavin, L. J. Jensen, and P. Bork, “Drug target identification using side-effect similarity,” Science, vol. 321, no. 5886, pp. 263–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. X.-M. Zhao, R.-S. Wang, L. Chen, and K. Aihara, “Uncovering signal transduction networks from high-throughput data by integer linear programming,” Nucleic Acids Research, vol. 36, no. 9, article e48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Fraser, “Simulation of genetic systems by automatic digital computers. I. Introduction,” Australian Journal of Biological Sciences, vol. 10, pp. 484–491, 1957. View at Google Scholar
  11. J. H. Holland, Adaptation in Natural and Artificial Systems: an Introductory analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, 1992.
  12. N. A. Barricell, “Numerical testing of evolution theories,” Journal of Statistical Computation and Simulation, vol. 1, no. 2, pp. 97–127, 1972. View at Google Scholar
  13. I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme Nach Prinzipien Der Biologischen Evolution, Technical University of Berlin, 1971.
  14. L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through Simulated Evolution, John Wiley & Sons, 1966.
  15. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Google Scholar · View at Scopus
  16. L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen, “Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method,” Bioinformatics, vol. 17, no. 12, pp. 1131–1142, 2002. View at Google Scholar · View at Scopus
  17. T. Jirapech-Umpai and S. Aitken, “Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes,” BMC Bioinformatics, vol. 6, article 148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Machine Learning, vol. 3, no. 2, pp. 95–99, 1988. View at Google Scholar
  19. J.-H. Hong and S.-B. Cho, “Efficient huge-scale feature selection with speciated genetic algorithm,” Pattern Recognition Letters, vol. 27, no. 2, pp. 143–150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. W. Chang, S. Abdul-Kareem, A. F. Merican et al., “Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods,” BMC Bioinformatics, vol. 14, article 170, 2013. View at Google Scholar
  21. G. Mahdevar, J. Zahiri, M. Sadeghi, A. Nowzari-Dalini, and H. Ahrabian, “Tag SNP selection via a genetic algorithm,” Journal of Biomedical Informatics, vol. 43, no. 5, pp. 800–804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. S. Carlson, M. A. Eberle, M. J. Rieder, Q. Yi, L. Kruglyak, and D. A. Nickerson, “Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium,” American Journal of Human Genetics, vol. 74, no. 1, pp. 106–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. A. Baggerly, J. S. Morris, J. Wang, D. Gold, L.-C. Xiao, and K. R. Coombes, “A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples,” Proteomics, vol. 3, no. 9, pp. 1667–1672, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. E. F. Petricoin III, A. M. Ardekani, and B. A. Hitt, “Use of proteomic patterns in serum to identify ovarian cancer,” The Lancet, vol. 359, pp. 572–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Li, H. Tang, Z. Wu et al., “Data mining techniques for cancer detection using serum proteomic profiling,” Artificial Intelligence in Medicine, vol. 32, no. 2, pp. 71–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. X.-M. Zhao, Y.-M. Cheung, and D.-S. Huang, “A novel approach to extracting features from motif content and protein composition for protein sequence classification,” Neural Networks, vol. 18, no. 8, pp. 1019–1028, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Gong, Z. Guo, J. Li et al., “Application of a genetic algorithm -Support vector machine hybrid for prediction of clinical phenotypes based on genome-wide SNP profiles of sib pairs,” in Proceedings of the 2nd International Confernce on Fuzzy Systems and Knowledge Discovery (FSKD '05), pp. 830–835, August 2005. View at Scopus
  28. L. Li, W. Jiang, X. Li et al., “A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset,” Genomics, vol. 85, no. 1, pp. 16–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. W.-L. Huang, C.-W. Tung, H.-L. Huang, S.-F. Hwang, and S.-Y. Ho, “ProLoc: prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features,” BioSystems, vol. 90, no. 2, pp. 573–581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Fernández and D. Miranda-Saavedra, “Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines,” Nucleic Acids Research, vol. 40, no. 10, p. e77, 2012. View at Publisher · View at Google Scholar
  31. Y. Saeys, S. Degroeve, D. Aeyels, P. Rouzé, and Y. Van de Peer, “Feature selection for splice site prediction: a new method using EDA-based feature ranking,” BMC Bioinformatics, vol. 5, article 64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Nemati, M. E. Basiri, N. Ghasem-Aghaee, and M. H. Aghdam, “A novel ACO-GA hybrid algorithm for feature selection in protein function prediction,” Expert Systems with Applications, vol. 36, no. 10, pp. 12086–12094, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. U. Kamath, J. Compton, R. Islamaj-Dogan, K. A. De Jong, and A. Shehu, “An evolutionary algorithm approach for feature generation from sequence data and its application to DNA splice site prediction,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 5, pp. 1387–1398, 2012. View at Google Scholar
  34. C. Zhan and L. F. Yeung, “Parameter estimation in systems biology models using spline approximation,” BMC Systems Biology, vol. 5, article 14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Ashyraliyev, Y. Fomekong-Nanfack, J. A. Kaandorp, and J. G. Blom, “Systems biology: parameter estimation for biochemical models,” FEBS Journal, vol. 276, no. 4, pp. 886–902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. R. Banga and E. Balsa-Canto, “Parameter estimation and optimal experimental design,” Essays in Biochemistry, vol. 45, pp. 195–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. C. G. Moles, P. Mendes, and J. R. Banga, “Parameter estimation in biochemical pathways: a comparison of global optimization methods,” Genome Research, vol. 13, no. 11, pp. 2467–2474, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Katsuragi, N. Ono, K. Yasumoto et al., “SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks,” Plant Cell Physiology, vol. 54, no. 5, pp. 728–739, 2013. View at Publisher · View at Google Scholar
  39. T. Ueda, D. Tominaga, N. Araki et al., “Estimate hidden dynamic profiles of siRNA effect on apoptosis,” BMC Bioinformatics, vol. 14, article 97, 2013. View at Google Scholar
  40. A. Abdullah, S. Deris, S. Anwar, and S. N. Arjunan, “An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters,” PloS One, vol. 8, no. 3, Article ID e56310, 2013. View at Google Scholar
  41. M. A. Savageau and R. Rosen, Biochemical Systems Analysis: A Study of Function and Design in molecular Biology (, Addison-Wesley, 1976.
  42. D. Tominaga and M. Okamoto, “Design of canonical model describing complex nonlinear dynamics,” in Proceedings of the 7th International Conference on Computer Applications in Biotechnology, pp. 85–90, 1998.
  43. S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi, and M. Tomita, “Dynamics modeling of genetic networks using genetic algorithm and S-system,” Bioinformatics, vol. 19, no. 5, pp. 643–650, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Tsutsui, M. Yamamura, and T. Higuchi, “Multi-parent recombination with simplex crossover in real coded genetic algorithms,” in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 657–664, 1999.
  45. N. Noman and H. Iba, “Reverse engineering genetic networks using evolutionary computation,” Genome Informatics, vol. 16, no. 2, pp. 205–214, 2005. View at Google Scholar · View at Scopus
  46. P. Moscato, “On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms,” Caltech Concurrent Computation Program 826, 1989. View at Google Scholar
  47. A. R. Chowdhury, M. Chetty, and N. X. Vinh, “Incorporating time-delays in S-System model for reverse engineering genetic networks,” BMC Bioinformatics, vol. 14, article 196, 2013. View at Publisher · View at Google Scholar
  48. D. Repsilber, H. Liljenström, and S. G. E. Andersson, “Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses,” BioSystems, vol. 66, no. 1-2, pp. 31–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. R. Mendoza and A. L. C. Bazzan, “Evolving random boolean networks with genetic algorithms for regulatory networks reconstruction,” in Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO '11), pp. 291–298, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Esmaeili and C. Jacob, “A multi-objective differential evolutionary approach toward more stable gene regulatory networks,” BioSystems, vol. 98, no. 3, pp. 127–136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Terfve, T. Cokelaer, D. Henriques et al., “CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms,” BMC Systems Biology, vol. 6, article 133, 2012. View at Google Scholar
  52. I. Crespo, A. Krishna, A. Le Bechec, and A. del Sol, “Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states,” Nucleic Acids Research, vol. 41, no. 1, article e8, 2013. View at Publisher · View at Google Scholar
  53. J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis, “Advances to Bayesian network inference for generating causal networks from observational biological data,” Bioinformatics, vol. 20, no. 18, pp. 3594–3603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. Z. Xing and D. Wu, “Modeling multiple time units delayed gene regulatory network using dynamic Bayesian network,” in Proceedings of the 6th IEEE International Conference on Data Mining—Workshops (ICDM '06), pp. 190–195, December 2006. View at Scopus
  55. Y. Li and A. Ngom, “The max-min high-order dynamic Bayesian network learning for identifying gene regulatory networks from time-series microarray data,” in Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB '13), pp. 83–90, 2013.
  56. G. Rozenberg and E. Engelfriet, “Elementary net systems,” in Lectures on Petri Nets I: Basic Models, vol. 1497, pp. 12–121, 1998. View at Google Scholar
  57. J. Nummela and B. A. Juistrom, “Evolving, petri nets to represent metabolic pathways,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '05), pp. 2133–2139, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Koh, H. F. C. Teong, M.-V. Clément, D. Hsu, and P. S. Thiagarajan, “A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathways and their crosstalk,” Bioinformatics, vol. 22, no. 14, pp. e271–e280, 2006. View at Publisher · View at Google Scholar · View at Scopus