Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 371828, 7 pages
http://dx.doi.org/10.1155/2014/371828
Research Article

Evaluation of Novel Tools to Facilitate the Detection and Characterization of Leprosy Patients in China

1Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
2Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
3Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
4Infectious Disease Research Institute (IDRI), 1616 Eastlake Avenue East, Seattle, WA, USA

Received 26 June 2014; Revised 18 July 2014; Accepted 18 July 2014; Published 12 August 2014

Academic Editor: Valeria Rolla

Copyright © 2014 Yan Wen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Chen, W. Li, C. Jiang, and G. Ye, “Leprosy in China: epidemiological trends between 1949 and 1998,” Bulletin of the World Health Organization, vol. 79, no. 4, pp. 306–312, 2001. View at Google Scholar · View at Scopus
  2. J. Shen, M. Zhou, W. Li, R. Yang, and J. Wang, “Features of leprosy transmission in pocket villages at low endemic situation in China,” Indian Journal of Leprosy, vol. 82, no. 2, pp. 73–78, 2010. View at Google Scholar · View at Scopus
  3. A. Pandey and H. Rathod, “Integration of leprosy into GHS in India: a follow up study (2006-2007),” Leprosy Review, vol. 81, no. 4, pp. 306–317, 2010. View at Google Scholar · View at Scopus
  4. M. R. Siddiqui, N. R. Velidi, S. Pati et al., “Integration of leprosy elimination into primary health care in Orissa, India,” PLoS ONE, vol. 4, no. 12, Article ID e8351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. WHO, “Global leprosy situation,” The Weekly Epidemiological Record, vol. 87, pp. 317–328, 2012. View at Google Scholar
  6. X. S. Chen, W. Z. Li, C. Jiang, and G. Y. Ye, “Leprosy in China: delay in the detection of cases,” Annals of Tropical Medicine and Parasitology, vol. 94, no. 2, pp. 181–188, 2000. View at Publisher · View at Google Scholar
  7. J. Shen, M. Zhou, X. Xu, A. Ray, G. Zhang, and L. Yan, “A big challenge in case finding at low endemic situation: analysis on 1462 new leprosy patients detected in China in 2007,” Leprosy Review, vol. 81, no. 3, pp. 176–183, 2010. View at Google Scholar · View at Scopus
  8. J. Shen, G. Zhang, X. Chen, M. Zhou, M. Yu, and L. Yan, “A long-term evolution on the epidemiological characteristics of leprosy, towards the goal of its elimination in 1949–2007 in China,” Zhonghua Liu Xing Bing Xue Za Zhi, vol. 29, no. 11, pp. 1095–1100, 2008. View at Google Scholar · View at Scopus
  9. M. Yu, L. Yan, J. Shen, Y. Sun, and G. Zhang, “Epidemiological analysis on leprosy in China, 2009,” Zhonghua Liu Xing Bing Xue Za Zhi, vol. 31, no. 10, pp. 1155–1157, 2010. View at Google Scholar · View at Scopus
  10. D. M. Scollard, L. B. Adams, T. P. Gillis, J. L. Krahenbuhl, R. W. Truman, and D. L. Williams, “The continuing challenges of leprosy,” Clinical Microbiology Reviews, vol. 19, no. 2, pp. 338–381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. WHO, Enhanced Global Strategy for Further Reducing the Disease Burden Due to Leprosy: 2011–2015, World Health Organization, Geneva, Switzerland, 2010.
  12. A. Singal and S. Sonthalia, “Leprosy in post-elimination era in India: difficult journey ahead,” Indian Journal of Dermatology, vol. 58, pp. 443–446, 2013. View at Google Scholar
  13. M. S. Duthie, R. Raychaudhuri, Y. L. Tutterrow et al., “A rapid ELISA for the diagnosis of MB leprosy based on complementary detection of antibodies against a novel protein-glycolipid conjugate,” Diagnostic Microbiology and Infectious Disease, vol. 79, no. 2, pp. 233–239, 2014. View at Google Scholar
  14. A. Geluk, M. S. Duthie, and J. S. Spencer, “Postgenomic Mycobacterium leprae antigens for cellular and serological diagnosis of M. leprae exposure, infection and leprosy disease,” Leprosy Review, vol. 82, no. 4, pp. 402–421, 2011. View at Google Scholar · View at Scopus
  15. L. P. Cardoso, R. F. Dias, A. A. Freitas et al., “Development of a quantitative rapid diagnostic test for multibacillary leprosy using smart phone technology,” BMC Infectious Diseases, vol. 13, article 497, 2013. View at Google Scholar
  16. M. S. Duthie, M. F. Balagon, A. Maghanoy et al., “Rapid quantitative serological test for detection of infection with mycobacterium leprae, the causative agent of leprosy,” Journal of Clinical Microbiology, vol. 52, no. 2, pp. 613–619, 2014. View at Publisher · View at Google Scholar
  17. S. M. Maeda, O. Rotta, N. S. Michalany, Z. P. Camargo, C. Sunderkötter, and J. Tomimori-Yamashita, “Comparison between anti-PGL-I serology and mitsuda reaction: clinical reading, microscopic findings and immunohistochemical analysis,” Leprosy Review, vol. 74, no. 3, pp. 263–274, 2003. View at Google Scholar · View at Scopus
  18. P. P. Roberts, H. M. Dockrell, and K. P. W. J. McAdam, “Evidence that the Mitsuda reaction to Mycobacterium leprae can be mediated by lymphocytes responsive to Mycobacterium tuberculosis,” Clinical and Experimental Immunology, vol. 72, no. 3, pp. 390–393, 1988. View at Google Scholar · View at Scopus
  19. M. Pai and D. Menzies, “The new IGRA and the old TST: making good use of disagreement,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 6, pp. 529–531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Pai, L. W. Riley, and J. M. Colford Jr., “Interferon-γ assays in the immunodiagnosis of tuberculosis: a systematic review,” The Lancet Infectious Diseases, vol. 4, no. 12, pp. 761–766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. S. Whitworth, M. Scott, D. W. Connell, B. Dongés, and A. Lalvani, “IGRAs—the gateway to T cell based TB diagnosis,” Methods, vol. 61, no. 1, pp. 52–62, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. M. S. Duthie, W. Goto, G. C. Ireton et al., “Antigen-specific T-cell responses of leprosy patients,” Clinical and Vaccine Immunology, vol. 15, no. 11, pp. 1659–1665, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. H. Sampaio, A. L. M. Sousa, M. C. Barcelos, S. G. Reed, M. M. A. Stefani, and M. S. Duthie, “Evaluation of various cytokines elicited during antigen-specific recall as potential risk indicators for the differential development of leprosy,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 31, no. 7, pp. 1443–1451, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. L. H. Sampaio, M. M. A. Stefani, R. M. Oliveira et al., “Immunologically reactive M. leprae antigens with relevance to diagnosis and vaccine development,” BMC Infectious Diseases, vol. 11, article 26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. Duthie, L. H. Sampaio, R. M. Oliveira et al., “Development and pre-clinical assessment of a 73kD chimeric fusion protein as a defined sub-unit vaccine for leprosy,” Vaccine, vol. 31, no. 5, pp. 813–819, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. R. M. Oliveira, E. M. Hungria, A. de Araújo Freitas et al., “Synergistic antigen combinations for the development of interferon gamma release assays for paucibacillary leprosy,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 33, no. 8, pp. 1415–1424, 2014. View at Google Scholar
  27. R. Stone, “Leprosy's last stand-or early days of a war of attrition?” Science, vol. 327, no. 5968, p. 939, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. G. J. Yang, L. Liu, H. R. Zhu et al., “China's sustained drive to eliminate neglected tropical diseases,” The Lancet Infectious Diseases, 2014. View at Publisher · View at Google Scholar
  29. R. P. Croft, P. G. Nicholls, E. W. Steyerberg, J. H. Richardus, and W. C. S. Smith, “A clinical prediction rule for nerve-function impairment in leprosy patients,” The Lancet, vol. 355, no. 9215, pp. 1603–1606, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. P. G. Nicholls, R. P. Croft, J. H. Richardus, S. G. Withington, and W. C. S. Smith, “Delay in presentation, an indicator for nerve function status at registration and for treatment outcome—the experience of the Bangladesh Acute Nerve Damage Study cohort,” Leprosy Review, vol. 74, no. 4, pp. 349–356, 2003. View at Google Scholar · View at Scopus
  31. N. H. J. van Veen, A. Meima, and J. H. Richardus, “The relationship between detection delay and impairment in leprosy control: a comparison of patient cohorts from Bangladesh and Ethiopia,” Leprosy Review, vol. 77, no. 4, pp. 356–365, 2006. View at Google Scholar · View at Scopus