Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 391542, 11 pages
http://dx.doi.org/10.1155/2014/391542
Research Article

Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

1Department of Bioengineering and Technology, College of Engineering, Kangwon National University, Chuncheon 200-701, Republic of Korea
2Department of Medical Biomaterial Engineering, Kangwon National University, Chuncheon 200-701, Republic of Korea
3Korea Institute of Ocean Science & Technology (KIOST), Gyeonggi-do, Ansan-si, P.O. Box 29, Seoul 426-744, Republic of Korea
4Department of Food Science and Engineering, Seowon University, Cheongju, Chungbuk 361-742, Republic of Korea

Received 8 November 2013; Revised 16 December 2013; Accepted 17 December 2013; Published 13 February 2014

Academic Editor: Kannan Pakshirajan

Copyright © 2014 Ga Vin Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.