Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 396727, 9 pages
http://dx.doi.org/10.1155/2014/396727
Research Article

Gender-Specific DNA Methylome Analysis of a Han Chinese Longevity Population

1The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
2Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
3Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
4University of Science and Technology Beijing, Beijing 100083, China
5Department of Neurology, Jiangbin Hospital, Nanning, Guangxi 530021, China
6Yongfu Committee of the Chinese People’s Political Consultative Conference, Yongfu, Guangxi 541800, China
7Department of Cardiothoracic Surgery, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi 530003, China

Received 28 November 2013; Accepted 28 February 2014; Published 14 April 2014

Academic Editor: Jean X. Gao

Copyright © 2014 Liang Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Iannitti and B. Palmieri, “Inflammation and genetics: an insight in the centenarian model,” Human Biology, vol. 83, no. 4, pp. 531–559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Salvioli, F. Olivieri, F. Marchegiani et al., “Genes, ageing and longevity in humans: problems, advantages and perspectives,” Free Radical Research, vol. 40, no. 12, pp. 1303–1323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Capri, S. Salvioli, F. Sevini et al., “The genetics of human longevity,” Annals of the New York Academy of Sciences, vol. 1067, no. 1, pp. 252–263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Salvioli, M. Capri, A. Santoro et al., “The impact of mitochondrial DNA on human lifespan: a view from studies on centenarians,” Biotechnology Journal, vol. 3, no. 6, pp. 740–749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Vijg and Y. Suh, “Genome instability and aging,” Annual Review of Physiology, vol. 75, pp. 645–668, 2013. View at Publisher · View at Google Scholar
  6. C. Franceschi and M. Bonafè, “Centenarians as a model for healthy aging,” Biochemical Society Transactions, vol. 31, no. 2, pp. 457–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Brooks-Wilson, “Genetics of healthy aging and longevity,” Human Genetics, vol. 132, no. 12, pp. 1323–1338, 2013. View at Publisher · View at Google Scholar
  8. W.-H. Chung, R.-L. Dao, L.-K. Chen, and S.-I. Hung, “The role of genetic variants in human longevity,” Ageing Research Reviews, vol. 9, supplement, pp. S67–S78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. M. Martin, A. Bergman, and N. Barzilai, “Genetic determinants of human health span and life span: progress and new opportunities,” PLoS Genetics, vol. 3, no. 7, p. e125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Murabito, R. Yuan, and K. L. Lunetta, “The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals,” Journals of Gerontology A: Biological Sciences and Medical Sciences, vol. 67, no. 5, pp. 470–479, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Sebastiani, N. Solovieff, A. Puca et al., “Genetic signatures of exceptional longevity in humans,” Science, vol. 2010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kuningas, K. Estrada, Y.-H. Hsu et al., “Large common deletions associate with mortality at old age,” Human Molecular Genetics, vol. 20, no. 21, Article ID ddr340, pp. 4290–4296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. K. D. Robertson, “DNA methylation and human disease,” Nature Reviews Genetics, vol. 6, no. 8, pp. 597–610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. D. de Carvalho, J. S. You, and P. A. Jones, “DNA methylation and cellular reprogramming,” Trends in Cell Biology, vol. 20, no. 10, pp. 609–617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Suvà, N. Riggi, and B. E. Bernstein, “Epigenetic reprogramming in cancer,” Science, vol. 339, no. 6127, pp. 1567–1570, 2013. View at Publisher · View at Google Scholar
  16. V. K. Rakyan, T. A. Down, D. J. Balding, and S. Beck, “Epigenome-wide association studies for common human diseases,” Nature Reviews Genetics, vol. 12, no. 8, pp. 529–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Wen, Z. P. Liu, Z. Liu, Y. Zhang, and L. Chen, “An integrated approach to identify causal network modules of complex diseases with application to colorectal cancer,” Journal of the American Medical Informatics Association, vol. 20, no. 4, pp. 659–667, 2013. View at Publisher · View at Google Scholar
  18. A. R. Mendelsohn and J. W. Larrick, “The DNA methylome as a biomarker for epigenetic instability and human aging,” Rejuvenation Research, vol. 16, no. 1, pp. 74–77, 2013. View at Publisher · View at Google Scholar
  19. S. Han and A. Brunet, “Histone methylation makes its mark on longevity,” Trends in Cell Biology, vol. 22, no. 1, pp. 42–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. D. Boyd-Kirkup, C. D. Green, G. Wu, D. Wang, and J. D. Han, “Epigenomics and the regulation of aging,” Epigenomics, vol. 5, no. 2, pp. 205–227, 2013. View at Publisher · View at Google Scholar
  21. H. Cedar and Y. Bergman, “Programming of DNA methylation patterns,” Annual Review of Biochemistry, vol. 81, pp. 97–117, 2012. View at Publisher · View at Google Scholar
  22. P. D'Aquila, G. Rose, D. Bellizzi, and G. Passarino, “Epigenetics and aging,” Maturitas, vol. 74, no. 2, pp. 130–136, 2013. View at Publisher · View at Google Scholar
  23. A. Saini, S. Mastana, F. Myers, and M. P. Lewis, “‘From death, lead me to immortality’—mantra of ageing skeletal muscle,” Current Genomics, vol. 14, no. 4, pp. 256–267, 2013. View at Publisher · View at Google Scholar
  24. D. G. Hernandez, M. A. Nalls, J. R. Gibbs et al., “Distinct DNA methylation changes highly correlated with chronological age in the human brain,” Human Molecular Genetics, vol. 20, no. 6, pp. 1164–1172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. R. Balistreri, G. Candore, G. Accardi et al., “Genetics of longevity. Data from the studies on Sicilian centenarians,” Immunity & Ageing, vol. 9, no. 1, p. 8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Gentilini, D. Mari, D. Castaldi et al., “Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians' offspring,” Age, vol. 35, no. 5, pp. 1961–1973, 2013. View at Google Scholar
  27. Y. Bergman and H. Cedar, “DNA methylation dynamics in health and disease,” Nature Structural & Molecular Biology, vol. 20, no. 3, pp. 274–281, 2013. View at Google Scholar
  28. H. Heyn, N. Li, H. J. Ferreira et al., “Distinct DNA methylomes of newborns and centenarians,” Proceedings of the National Academy of Sciences USA, vol. 109, no. 26, pp. 10522–10527, 2012. View at Publisher · View at Google Scholar
  29. G. Passarino, C. Calignano, A. Vallone et al., “Male/female ratio in centenarians: a possible role played by population genetic structure,” Experimental Gerontology, vol. 37, no. 10-11, pp. 1283–1289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Viña and C. Borrás, “Women live longer than men: understanding molecular mechanisms offers opportunities to intervene by using estrogenic compounds,” Antioxidants & Redox Signaling, vol. 13, no. 3, pp. 269–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. E. L. B. Barrett and D. S. Richardson, “Sex differences in telomeres and lifespan,” Aging Cell, vol. 10, no. 6, pp. 913–921, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. R. C. May, “Gender, immunity and the regulation of longevity,” BioEssays, vol. 29, no. 8, pp. 795–802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Tower, “Sex-specific regulation of aging and apoptosis,” Mechanisms of Ageing and Development, vol. 127, no. 9, pp. 705–718, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Y.-F. Chen, C.-Y. Wu, C.-H. Kao, and T.-F. Tsai, “Longevity and lifespan control in mammals: lessons from the mouse,” Ageing Research Reviews, vol. 9, supplement, pp. S28–S35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. U. Jackson, A. T. Galecki, D. T. Burke, and R. A. Miller, “Mouse loci associated with life span exhibit sex-specific and epistatic effects,” Journals of Gerontology A: Biological Sciences and Medical Sciences, vol. 57, no. 1, pp. B9–B15, 2002. View at Google Scholar · View at Scopus
  36. E. Ziȩtkiewicz, A. Wojda, and M. Witt, “Cytogenetic perspective of ageing and longevity in men and women,” Journal of Applied Genetics, vol. 50, no. 3, pp. 261–273, 2009. View at Google Scholar · View at Scopus
  37. G. de los Campos, Y. C. Klimentidis, A. I. Vazquez, and D. B. Allison, “Prediction of expected years of life using whole-genome markers,” PLoS ONE, vol. 7, no. 7, Article ID e40964, 2012. View at Google Scholar
  38. Z. Pan and C. Chang, “Gender and the regulation of longevity: implications for autoimmunity,” Autoimmunity Reviews, vol. 11, no. 6-7, pp. A393–A403, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Bennett, X. Song, A. Mitnitski, and K. Rockwood, “A limit to frailty in very old, community-dwelling people: a secondary analysis of the Chinese longitudinal health and longevity study,” Age and Ageing, vol. 42, no. 3, pp. 372–377, 2013. View at Publisher · View at Google Scholar
  40. L. Sun, C. Y. Hu, X. H. Shi et al., “Trans-ethnical shift of the risk genotype in the CETP I405V with longevity: a Chinese case-control study and meta-analysis,” PLoS ONE, vol. 8, no. 8, Article ID e72537, 2013. View at Google Scholar
  41. Y. Liu, M. J. Aryee, L. Padyukov et al., “Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis,” Nature Biotechnology, vol. 31, no. 2, pp. 142–147, 2013. View at Publisher · View at Google Scholar
  42. J. U. Guo, D. K. Ma, H. Mo et al., “Neuronal activity modifies the DNA methylation landscape in the adult brain,” Nature Neuroscience, vol. 14, no. 10, pp. 1345–1351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Falcon and R. Gentleman, “Using GOstats to test gene lists for GO term association,” Bioinformatics, vol. 23, no. 2, pp. 257–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society B, vol. 57, pp. 289–300, 1995. View at Google Scholar
  45. R. Ihaka and R. Gentleman, “R: a language for data analysis and graphics,” Journal of Computational and Graphical Statistics, vol. 5, no. 3, pp. 299–314, 1996. View at Google Scholar · View at Scopus
  46. G. Toperoff, D. Aran, J. D. Kark et al., “Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood,” Human Molecular Genetics, vol. 21, no. 2, Article ID ddr472, pp. 371–383, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. S. J. Docherty, O. S. Davis, C. M. Haworth et al., “Bisulfite-based epityping on pooled genomic DNA provides an accurate estimate of average group DNA methylation,” Epigenetics & Chromatin, vol. 2, no. 1, article 3, 2009. View at Google Scholar
  48. M. Krzywinski, J. Schein, I. Birol et al., “Circos: an information aesthetic for comparative genomics,” Genome Research, vol. 19, no. 9, pp. 1639–1645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Gilbert, “Disease genes and chromosomes: disease maps of the human genome. Chromosome 17,” Genetic testing, vol. 2, no. 4, pp. 357–381, 1998. View at Google Scholar · View at Scopus
  50. Y. Ding, F. He, H. Wen et al., “DNA methylation status of cyp17-II gene correlated with its expression pattern and reproductive endocrinology during ovarian development stages of Japanese flounder (Paralichthys olivaceus),” Gene, vol. 527, no. 1, pp. 82–88, 2013. View at Publisher · View at Google Scholar
  51. D. Ben-Avraham, R. H. Muzumdar, and G. Atzmon, “Epigenetic genome-wide association methylation in aging and longevity,” Epigenomics, vol. 4, no. 5, pp. 503–509, 2012. View at Publisher · View at Google Scholar
  52. J. Wang, S. Zhang, Y. Wang, L. Chen, and X.-S. Zhang, “Disease-aging network reveals significant roles of aging genes in connecting genetic diseases,” PLoS Computational Biology, vol. 5, no. 9, Article ID e1000521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Nusse and H. Varmus, “Three decades of Wnts: a personal perspective on how a scientific field developed,” The EMBO Journal, vol. 31, no. 12, pp. 2670–2684, 2012. View at Publisher · View at Google Scholar
  54. C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 781–810, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. J. M. Devaney, S. Wang, S. Funda et al., “Identification of novel DNA-methylated genes that correlate withhuman prostate cancer and high-grade prostatic intraepithelialneoplasia,” Prostate Cancer and Prostatic Diseases, vol. 16, no. 4, pp. 292–300, 2013. View at Publisher · View at Google Scholar
  56. J. C. Yoon, A. Ng, B. H. Kim, A. Bianco, R. J. Xavier, and S. J. Elledge, “Wnt signaling regulates mitochondrial physiology and insulin sensitivity,” Genes & Development, vol. 24, no. 14, pp. 1507–1518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. P. M. Cawthon, “Gender differences in osteoporosis and fractures,” Clinical Orthopaedics and Related Research, vol. 469, no. 7, pp. 1900–1905, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. W.-F. Li, S.-X. Hou, B. Yu, M.-M. Li, C. Férec, and J.-M. Chen, “Genetics of osteoporosis: accelerating pace in gene identification and validation,” Human Genetics, vol. 127, no. 3, pp. 249–285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Franceschi, M. Bonafè, S. Valensin et al., “Inflamm-aging. An evolutionary perspective on immunosenescence,” Annals of the New York Academy of Sciences, vol. 908, pp. 244–254, 2000. View at Google Scholar · View at Scopus
  60. T. A. Christensen and J. G. Hildebrand, “Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta,” Journal of Comparative Physiology A, vol. 160, no. 5, pp. 553–569, 1987. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Franceschi, L. Motta, M. Motta et al., “The extreme longevity: the state of the art in Italy,” Experimental Gerontology, vol. 43, no. 2, pp. 45–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Tower and M. Arbeitman, “The genetics of gender and life span,” Journal of Biology, vol. 8, no. 4, p. 38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. K. D. Siegmund, C. M. Connor, M. Campan et al., “DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons,” PLoS ONE, vol. 2, no. 9, p. e895, 2007. View at Publisher · View at Google Scholar · View at Scopus