Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 404680, 17 pages
http://dx.doi.org/10.1155/2014/404680
Review Article

Effect of Antioxidants Supplementation on Aging and Longevity

1Department of Biochemistry and Cell Biology, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
2Department of Molecular Biophysics, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland

Received 14 January 2014; Accepted 11 February 2014; Published 25 March 2014

Academic Editor: Efstathios S. Gonos

Copyright © 2014 Izabela Sadowska-Bartosz and Grzegorz Bartosz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Lin and N. Austriaco, “Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans,” FEMS Yeast Research, vol. 14, no. 1, pp. 119–135, 2014. View at Publisher · View at Google Scholar
  2. K. Książek, “Let's stop overlooking bacterial aging,” Biogerontology, vol. 11, no. 6, pp. 717–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. K. A. Hughes and R. M. Reynolds, “Evolutionary and mechanistic theories of aging,” Annual Review of Entomology, vol. 50, pp. 421–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Viña, C. Borrás, and J. Miquel, “Theories of ageing,” IUBMB Life, vol. 59, no. 4-5, pp. 249–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. J. Brewer, “Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories,” Experimental Gerontology, vol. 45, no. 3, pp. 173–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Cefalu, “Theories and mechanisms of aging,” Clinics in Geriatric Medicine, vol. 27, no. 4, pp. 491–506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Zimniak, “Relationship of electrophilic stress to aging,” Free Radical Biology and Medicine, vol. 51, no. 6, pp. 1087–1105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. I. Rattan, “Theories of biological aging: genes, proteins, and free radicals,” Free Radical Research, vol. 40, no. 12, pp. 1230–1238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. I. Rattan, V. Kryzch, S. Schnebert, E. Perrier, and C. Nizard, “Hormesis-based anti-aging products: a case study of a novel cosmetic,” Dose-Response, vol. 11, no. 1, pp. 99–108, 2013. View at Publisher · View at Google Scholar
  10. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” The Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Publisher · View at Google Scholar · View at Scopus
  11. T. B. Kirkwood and A. Kowald, “The free-radical theory of ageing—older, wiser and still alive,” BioEssays, vol. 34, no. 8, pp. 692–700, 2012. View at Publisher · View at Google Scholar
  12. V. N. Gladyshev, “The free radical theory of aging is dead. Long live the damage theory!,” Antioxidants & Redox Signaling, vol. 20, no. 4, pp. 727–731, 2014. View at Publisher · View at Google Scholar
  13. B. Poeggeler, K. Sambamurti, S. L. Siedlak, G. Perry, M. A. Smith, and M. A. Pappolla, “A novel endogenous indole protects rodent mitochondria and extends rotifer lifespan,” PLoS ONE, vol. 5, no. 4, article e10206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. V. K. Khavinson, D. M. Izmaylov, L. K. Obukhova, and V. V. Malinin, “Effect of epitalon on the lifespan increase in Drosophila melanogaster,” Mechanisms of Ageing and Development, vol. 120, no. 1–3, pp. 141–149, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Stvolinsky, M. Antipin, K. Meguro, T. Sato, H. Abe, and A. Boldyrev, “Effect of carnosine and its trolox-modified derivatives on life span of Drosophila melanogaster,” Rejuvenation Research, vol. 13, no. 4, pp. 453–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Timmers, J. Auwerx, and P. Schrauwen, “The journey of resveratrol from yeast to human,” Aging, vol. 4, no. 3, pp. 146–158, 2012. View at Google Scholar
  17. A. Lançon, J. J. Michaille, and N. Latruffe, “Effects of dietary phytophenols on the expression of microRNAs involved in mammalian cell homeostasis,” Journal of the Science of Food and Agriculture, vol. 93, no. 13, pp. 3155–3164, 2013. View at Publisher · View at Google Scholar
  18. J. Marchal, F. Pifferi, and F. Aujard, “Resveratrol in mammals: effects on aging biomarkers, age-related diseases, and life span,” Annals of the New York Academy of Sciences, vol. 1290, pp. 67–73, 2013. View at Publisher · View at Google Scholar
  19. L. R. Shen, L. D. Parnell, J. M. Ordovas, and C. Q. Lai, “Curcumin and aging,” Biofactors, vol. 39, no. 1, pp. 133–140, 2013. View at Publisher · View at Google Scholar
  20. K. Kitani, T. Osawa, and T. Yokozawa, “The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice,” Biogerontology, vol. 8, no. 5, pp. 567–573, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Cañuelo, B. Gilbert-López, P. Pacheco-Liñán, E. Martínez-Lara, E. Siles, and A. Miranda-Vizuete, “Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 133, no. 8, pp. 563–574, 2012. View at Publisher · View at Google Scholar
  22. V. P. Skulachev, “How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers,” IUBMB Life, vol. 57, no. 4-5, pp. 305–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. V. N. Anisimov, M. V. Egorov, M. S. Krasilshchikova et al., “Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents,” Aging, vol. 3, no. 11, pp. 1110–1119, 2011. View at Google Scholar · View at Scopus
  24. Y. T. Lam, R. Stocker, and I. W. Dawes, “The lipophilic antioxidants α-tocopherol and coenzyme Q10 reduce the replicative lifespan of Saccharomyces cerevisiae,” Free Radical Biology and Medicine, vol. 49, no. 2, pp. 237–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Yazawa, H. Iwahashi, Y. Kamisaka, K. Kimura, and H. Uemura, “Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance,” Yeast, vol. 26, no. 3, pp. 167–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Pallauf, J. K. Bendall, C. Scheiermann et al., “Vitamin C and lifespan in model organisms,” Food Chemistry and Toxicology, vol. 58, pp. 255–263, 2013. View at Publisher · View at Google Scholar
  27. I. M. Ernst, K. Pallauf, J. K. Bendall et al., “Vitamin E supplementation and lifespan in model organisms,” Ageing Research Reviews, vol. 12, no. 1, pp. 365–375, 2013. View at Google Scholar
  28. C. Selman, J. S. McLaren, A. R. Collins, G. G. Duthie, and J. R. Speakman, “Deleterious consequences of antioxidant supplementation on lifespan in a wild-derived mammal,” Biology Letters, vol. 9, no. 4, Article ID 20130432, 2013. View at Publisher · View at Google Scholar
  29. K. L. Hector, M. Lagisz, and S. Nakagawa, “The effect of resveratrol on longevity across species: a meta-analysis,” Biology Letters, vol. 8, no. 5, pp. 790–793, 2012. View at Google Scholar
  30. G. Vecchio, A. Galeone, V. Brunetti et al., “Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster,” PLoS ONE, vol. 7, no. 1, article e29980, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Kim, M. Takahashi, T. Shimizu et al., “Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 129, no. 6, pp. 322–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. L. Quick, S. S. Ali, R. Arch, C. Xiong, D. Wozniak, and L. L. Dugan, “A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice,” Neurobiology of Aging, vol. 29, no. 1, pp. 117–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. R. Spindler, P. L. Mote, and J. M. Flegal, “Lifespan effects of simple and complex nutraceutical combinations fed isocalorically to mice,” Age, 2013. View at Publisher · View at Google Scholar
  34. Y. Honda, Y. Fujita, H. Maruyama et al., “Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans,” PLoS ONE, vol. 6, no. 8, article e23527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Inoue, S. Koya-Miyata, S. Ushio, K. Iwaki, M. Ikeda, and M. Kurimoto, “Royal Jelly prolongs the life span of C3H/HeJ mice: correlation with reduced DNA damage,” Experimental Gerontology, vol. 38, no. 9, pp. 965–969, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. E. le Bourg, “Hormesis, aging and longevity,” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1030–1039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Carney, P. E. Starke-Reed, C. N. Oliver et al., “Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3633–3636, 1991. View at Publisher · View at Google Scholar · View at Scopus
  38. R. A. Shetty, M. J. Forster, and N. Sumien, “Coenzyme Q(10) supplementation reverses age-related impairments in spatial learning and lowers protein oxidation,” Age, vol. 35, no. 5, pp. 1821–1834, 2013. View at Google Scholar
  39. L. Partridge and D. Gems, “Mechanisms of ageing: public or private?” Nature Reviews Genetics, vol. 3, no. 3, pp. 165–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Biliński, R. Zadrąg-Tęcza, and G. Bartosz, “Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast,” FEMS Yeast Research, vol. 12, no. 1, pp. 97–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Zadrag, G. Bartosz, and T. Bilinski, “Is the yeast a relevant model for aging of multicellular organisms? An insight from the total lifespan of Saccharomyces cerevisiae,” Current Aging Science, vol. 1, no. 3, pp. 159–165, 2008. View at Google Scholar · View at Scopus
  42. G. Bánhegyi, L. Braun, M. Csala, F. Puskás, and J. Mandl, “Ascorbate metabolism and its regulation in animals,” Free Radical Biology and Medicine, vol. 23, no. 5, pp. 793–803, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Shibamura, T. Ikeda, and Y. Nishikawa, “A method for oral administration of hydrophilic substances to Caenorhabditis elegans: effects of oral supplementation with antioxidants on the nematode lifespan,” Mechanisms of Ageing and Development, vol. 130, no. 9, pp. 652–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. E. le Bourg, “Oxidative stress, aging and longevity in Drosophila melanogaster,” FEBS Letters, vol. 498, no. 2-3, pp. 183–186, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. S. A. Farr, T. O. Price, W. A. Banks, N. Ercal, and J. E. Morley, “Effect of alpha-lipoic acid on memory, oxidation, and lifespan in SAMP8 mice,” Journal of Alzheimer's Disease, vol. 32, no. 2, pp. 447–455, 2012. View at Publisher · View at Google Scholar
  46. Y. L. Xue, T. Ahiko, T. Miyakawa et al., “Isolation and Caenorhabditis elegans lifespan assay of flavonoids from onion,” Journal of Agricultural and Food Chemistry, vol. 59, no. 11, pp. 5927–5934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. P. B. Pun, J. Gruber, S. Y. Tang et al., “Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans?” Biogerontology, vol. 11, no. 1, pp. 17–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Chen, L. Rezaizadehnajafi, and M. Wink, “Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans,” Journal of Pharmacy and Pharmacology, vol. 65, no. 5, pp. 682–688, 2013. View at Google Scholar
  49. K. T. Howitz, K. J. Bitterman, H. Y. Cohen et al., “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no. 6954, pp. 191–196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Ghosh, B. Liu, and Z. Zhou, “Resveratrol activates SIRT1 in a Lamin A-dependent manner,” Cell Cycle, vol. 12, no. 6, pp. 872–876, 2013. View at Google Scholar
  51. M. Gertz, G. T. Nguyen, F. Fischer et al., “A molecular mechanism for direct sirtuin activation by resveratrol,” PLoS ONE, vol. 7, no. 11, article e49761, Article ID e49761, 2012. View at Publisher · View at Google Scholar
  52. D. L. Smith Jr., T. R. Nagy, and D. B. Allison, “Calorie restriction: what recent results suggest for the future of ageing research,” European Journal of Clinical Investigation, vol. 40, no. 5, pp. 440–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Rascón, B. P. Hubbard, D. A. Sinclair, and G. V. Amdam, “The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction,” Aging, vol. 4, no. 7, pp. 499–508, 2012. View at Google Scholar
  54. C. Burnett, S. Valentini, F. Cabreiro et al., “Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila,” Nature, vol. 477, no. 7365, pp. 482–485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Chang, A. Rimando, M. Pallas et al., “Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease,” Neurobiology of Aging, vol. 33, no. 9, pp. 2062–2071, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Wen, X. Gao, and J. Qin, “Probing the anti-aging role of polydatin in Caenorhabditis elegans on a chip,” Integrative Biology: Quantitive Biosecences from Nano to Macro, vol. 6, no. 1, pp. 35–43, 2013. View at Google Scholar
  57. S. Shishodia, “Molecular mechanisms of curcumin action: gene expression,” Biofactors, vol. 39, no. 1, pp. 37–55, 2013. View at Publisher · View at Google Scholar
  58. A. Monroy, G. J. Lithgow, and S. Alavez, “Curcumin and neurodegenerative diseases,” Biofactors, vol. 39, no. 1, pp. 122–132, 2013. View at Google Scholar
  59. J. M. Witkin and X. Li, “Curcumin, an active constiuent of the ancient medicinal herb Curcuma longa L.: some uses and the establishment and biological basis of medical efficacy,” CNS & Neurological Disorders: Drug Targets, vol. 12, no. 4, pp. 487–497, 2013. View at Publisher · View at Google Scholar
  60. L. Xiang, Y. Nakamura, Y. M. Lim et al., “Tetrahydrocurcumin extends life span and inhibits the oxidative stress response by regulating the FOXO forkhead transcription factor,” Aging, vol. 3, no. 11, pp. 1098–1109, 2011. View at Google Scholar · View at Scopus
  61. Y. Pu, H. Zhang, P. Wang et al., “Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway,” Cellular Physiology and Biochemistry, vol. 32, no. 5, pp. 1167–1177, 2013. View at Publisher · View at Google Scholar
  62. S. Yanase, Y. Luo, and H. Maruta, “PAK1-deficiency/down-regulation reduces brood size, activates HSP16.2 gene and extends lifespan in Caenorhabditis elegans,” Drug Discoveries & Therapeutics, vol. 7, no. 1, pp. 29–35, 2013. View at Google Scholar
  63. C. W. Yu, C. C. Wei, and V. H. Liao, “Curcumin-mediated oxidative stress resistance in Caenorhabditis elegans is modulated by age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1,” Free Radical Research, vol. 48, no. 3, pp. 371–379, 2014. View at Publisher · View at Google Scholar
  64. K.-S. Lee, B.-S. Lee, S. Semnani et al., “Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster,” Rejuvenation Research, vol. 13, no. 5, pp. 561–570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. L. R. Shen, F. Xiao, P. Yuan et al., “Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila,” Age, vol. 35, no. 4, pp. 1133–1142, 2013. View at Google Scholar
  66. R. Doonan, J. J. McElwee, F. Matthijssens et al., “Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans,” Genes & Development, vol. 22, no. 23, pp. 3236–3241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. V. I. Pérez, A. Bokov, H. van Remmen et al., “Is the oxidative stress theory of aging dead?” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1005–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. M. van Raamsdonk and S. Hekimi, “Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans,” PLoS Genetics, vol. 5, no. 2, article e1000361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. J. M. van Raamsdonk and S. Hekimi, “Superoxide dismutase is dispensable for normal animal lifespan,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 15, pp. 5785–5790, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. K. A. Rodriguez, Y. H. Edrey, P. Osmulski, M. Gaczynska, and R. Buffenstein, “Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat,” PLoS ONE, vol. 7, no. 5, article e35890, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. J. W. Gu, K. L. Makey, K. B. Tucker et al., “EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression,” Vascular Cell, vol. 5, no. 1, article 9, 2013. View at Publisher · View at Google Scholar
  72. M. J. Lee, P. Maliakal, L. Chen et al., “Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability,” Cancer Epidemiology, Biomarkers & Prevention, vol. 11, no. 10, part 1, pp. 1025–1032, 2002. View at Google Scholar · View at Scopus
  73. N. T. Zaveri, “Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications,” Life Sciences, vol. 78, no. 18, pp. 2073–2080, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Jomova, D. Vondrakova, M. Lawson, and M. Valko, “Metals, oxidative stress and neurodegenerative disorders,” Molecular and Cellular Biochemistry, vol. 345, no. 1-2, pp. 91–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Mähler, S. Mandel, M. Lorenz et al., “Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases?” The EPMA Journal, vol. 4, no. 1, article 5, 2013. View at Publisher · View at Google Scholar
  76. O. Weinreb, T. Amit, and M. B. Youdim, “A novel approach of proteomics and transcriptomics to study the mechanism of action of the antioxidant-iron chelator green tea polyphenol (-)-epigallocatechin-3-gallate,” Free Radical Biology and Medicine, vol. 43, no. 4, pp. 546–556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. Niu, L. Na, R. Feng et al., “The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats,” Aging Cell, vol. 12, no. 6, pp. 1041–1049, 2013. View at Publisher · View at Google Scholar
  78. B. J. Willcox, T. A. Donlon, Q. He et al., “FOXO3A genotype is strongly associated with human longevity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 13987–13992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. M. K. Brown, J. L. Evans, and Y. Luo, “Beneficial effects of natural antioxidants EGCG and α-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans,” Pharmacology Biochemistry and Behavior, vol. 85, no. 3, pp. 620–628, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. Q. Meng, C. N. Velalar, and R. Ruan, “Effects of epigallocatechin-3-gallate on mitochondrial integrity and antioxidative enzyme activity in the aging process of human fibroblast,” Free Radical Biology and Medicine, vol. 44, no. 6, pp. 1032–1041, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Davinelli, R. di Marco, R. Bracale, A. Quattrone, D. Zella, and G. Scapagnini, “Synergistic effect of L-Carnosine and EGCG in the prevention of physiological brain aging,” Current Pharmaceutical Design, vol. 19, no. 15, pp. 2722–2727, 2013. View at Publisher · View at Google Scholar
  82. J. Rodrigues, M. Assunção, N. Lukoyanov, A. Cardoso, F. Carvalho, and J. P. Andrade, “Protective effects of a catechin-rich extract on the hippocampal formation and spatial memory in aging rats,” Behavioural Brain Research, vol. 246, pp. 94–102, 2013. View at Publisher · View at Google Scholar
  83. B. Feng, Y. Fang, and S. M. Wei, “Effect and mechanism of epigallocatechin-3-gallate (EGCG) against the hydrogen peroxide-induced oxidative damage in human dermal fibroblasts,” Journal of Cosmetic Science, vol. 64, no. 1, pp. 35–44, 2013. View at Google Scholar
  84. L. Elbling, R. M. Weiss, O. Teufelhofer et al., “Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities,” The FASEB Journal, vol. 19, no. 7, pp. 807–809, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Furukawa, S. Oikawa, M. Murata, Y. Hiraku, and S. Kawanishi, “(−)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA,” Biochemical Pharmacology, vol. 66, no. 9, pp. 1769–1778, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. N. Saul, K. Pietsch, R. Menzel, S. R. Stürzenbaum, and C. E. Steinberg, “Catechin induced longevity in C. elegans: from key regulator genes to disposable soma,” Mechanisms of Ageing and Development, vol. 130, no. 8, pp. 477–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Sunagawa, T. Shimizu, T. Kanda, M. Tagashira, M. Sami, and T. Shirasawa, “Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans,” Planta Medica, vol. 77, no. 2, pp. 122–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Bahadorani and A. J. Hilliker, “Cocoa confers life span extension in Drosophila melanogaster,” Nutrition Research, vol. 28, no. 6, pp. 377–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Zuo, C. Peng, Y. Liang et al., “Black rice extract extends the lifespan of fruit flies,” Food & Function, vol. 3, no. 12, pp. 1271–1279, 2012. View at Google Scholar
  90. G. Grünz, K. Haas, S. Soukup et al., “Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans,” Mechanisms of Ageing and Development, vol. 133, no. 1, pp. 1–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. E. L. Abner, F. A. Schmitt, M. S. Mendiondo, J. L. Marcum, and R. J. Krysci, “Vitamin E and all-cause mortality: a meta-analysis,” Current Aging Science, vol. 4, no. 2, pp. 158–170, 2011. View at Google Scholar · View at Scopus
  92. V. Calabrese, C. Cornelius, A. T. Dinkova-Kostova et al., “Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity,” Biochimica et Biophysica Acta, vol. 1822, no. 5, pp. 753–783, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. S. I. Rattan, “Rationale and methods of discovering hormetins as drugs for healthy ageing,” Expert Opinion on Drug Discovery, vol. 7, no. 5, pp. 439–448, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. Z. Wu, J. V. Smith, V. Paramasivam et al., “Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans,” Cellular and Molecular Biology, vol. 48, no. 6, pp. 725–731, 2002. View at Google Scholar · View at Scopus
  95. A. Kampkötter, C. G. Nkwonkam, R. F. Zurawski et al., “Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans,” Toxicology, vol. 234, no. 1-2, pp. 113–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Ristow and K. Zarse, “How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis),” Experimental Gerontology, vol. 45, no. 6, pp. 410–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Ristow and S. Schmeisser, “Extending life span by increasing oxidative stress,” Free Radical Biology and Medicine, vol. 51, no. 2, pp. 327–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Schmeisser, K. Zarse, and M. Ristow, “Lonidamine extends lifespan of adult Caenorhabditis elegans by increasing the formation of mitochondrial reactive oxygen species,” Hormone and Metabolic Research, vol. 43, no. 10, pp. 687–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Schmeisser, K. Schmeisser, S. Weimer et al., “Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension,” Aging Cell, vol. 12, no. 3, pp. 508–517, 2013. View at Google Scholar
  100. K. Zarse, A. Bossecker, L. Müller-Kuhrt et al., “The phytochemical glaucarubinone promotes mitochondrial metabolism, reduces body fat, and extends lifespan of Caenorhabditis elegans,” Hormone and Metabolic Research, vol. 43, no. 4, pp. 241–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. T. J. Schulz, K. Zarse, A. Voigt, N. Urban, M. Birringer, and M. Ristow, “Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress,” Cell Metabolism, vol. 6, no. 4, pp. 280–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Bartosz, “Reactive oxygen species: destroyers or messengers?” Biochemical Pharmacology, vol. 77, no. 8, pp. 1303–1315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. I. Juránek, D. Nikitovic, D. Kouretas, A. W. Hayes, and A. M. Tsatsakis, “Biological importance of reactive oxygen species in relation to difficulties of treating pathologies involving oxidative stress by exogenous antioxidants,” Food Chemistry and Toxicology, vol. 61, pp. 240–247, 2013. View at Publisher · View at Google Scholar
  104. X. Wang, H. Fang, Z. Huang et al., “Imaging ROS signaling in cells and animals,” Journal of Molecular Medicine, vol. 91, no. 8, pp. 917–927, 2013. View at Publisher · View at Google Scholar
  105. H. J. Forman, K. J. Davies, and F. Ursini, “How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo,” Free Radical Biology and Medicine, vol. 66, pp. 24–35, 2014. View at Publisher · View at Google Scholar
  106. I. Sánchez Zaplana and E. Maestre González, “[Feeding and aging],” Revista da Escola de Enfermagem, vol. 36, no. 6, pp. 8–15, 2013. View at Google Scholar
  107. S. Dato, P. Crocco, P. D'Aquila et al., “Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity,” International Journal of Molecular Sciences, vol. 14, no. 8, pp. 16443–16472, 2013. View at Google Scholar
  108. P. Chedraui and F. R. Pérez-López, “Nutrition and health during mid-life: searching for solutions and meeting challenges for the aging population,” Climacteric, vol. 16, supplement 1, pp. 85–95, 2013. View at Publisher · View at Google Scholar
  109. C. Chrysohoou and C. Stefanadis, “Longevity and diet. Myth or pragmatism?” Maturitas, vol. 76, no. 4, pp. 303–307, 2013. View at Google Scholar
  110. C. Chrysohoou, J. Skoumas, C. Pitsavos et al., “Long-term adherence to the Mediterranean diet reduces the prevalence of hyperuricaemia in elderly individuals, without known cardiovascular disease: the Ikaria study,” Maturitas, vol. 70, no. 1, pp. 58–64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. N. Scarmeas, Y. Stern, R. Mayeux, J. J. Manly, N. Schupf, and J. A. Luchsinger, “Mediterranean diet and mild cognitive impairment,” Archives of Neurology, vol. 66, no. 2, pp. 216–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. N. Scarmeas, J. A. Luchsinger, R. Mayeux, and Y. Stern, “Mediterranean diet and Alzheimer disease mortality,” Neurology, vol. 69, no. 11, pp. 1084–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. C. Féart, C. Samieri, V. Rondeau et al., “Adherence to a mediterranean diet, cognitive decline, and risk of dementia,” The Journal of the American Medical Association, vol. 302, no. 6, pp. 638–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. N. Cherbuin and K. J. Anstey, “The mediterranean diet is not related to cognitive change in a large prospective investigation: the PATH Through Life Study,” The American Journal of Geriatric Psychiatry, vol. 20, no. 7, pp. 635–639, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. O. E. Titova, E. Ax, S. J. Brooks et al., “Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes,” Experimental Gerontology, vol. 48, no. 12, pp. 1443–1448, 2013. View at Google Scholar
  116. M. G. Bacalini, S. Friso, F. Olivieri et al., “Present and future of anti-ageing epigenetic diets,” Mechanisms of Ageing and Development, 2014. View at Publisher · View at Google Scholar
  117. T. M. Hardy and T. O. Tollefsbol, “Epigenetic diet: impact on the epigenome and cancer,” Epigenomics, vol. 3, no. 4, pp. 503–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. S. L. Martin, T. M. Hardy, and T. O. Tollefsbol, “Medicinal chemistry of the epigenetic diet and caloric restriction,” Current Medicinal Chemistry, vol. 20, no. 32, pp. 4050–4059, 2013. View at Google Scholar
  119. V. A. Brown, K. R. Patel, M. Viskaduraki et al., “Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis,” Cancer Research, vol. 70, no. 22, pp. 9003–9011, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. J. M. Smoliga, E. S. Colombo, and M. J. Campen, “A healthier approach to clinical trials evaluating resveratrol for primary prevention of age-related diseases in healthy populations,” Aging, vol. 5, no. 7, pp. 495–506, 2013. View at Google Scholar
  121. D. H. Kim, M. A. Hossain, M. Y. Kim et al., “A novel resveratrol analogue, HS-1793, inhibits hypoxia-induced HIF-1α and VEGF expression, and migration in human prostate cancer cells,” International Journal of Oncology, vol. 43, no. 6, pp. 1915–1924, 2013. View at Google Scholar
  122. J. A. Kim, D. H. Kim, M. A. Hossain et al., “HS-1793, a resveratrol analogue, induces cell cycle arrest and apoptotic cell death in human breast cancer cells,” International Journal of Oncology, vol. 44, no. 2, pp. 473–480, 2014. View at Google Scholar
  123. H. Ota, M. Akishita, H. Tani et al., “trans-resveratrol in Gnetum gnemon protects against oxidative-stress-induced endothelial senescence,” Journal of Natural Products, vol. 76, no. 7, pp. 1242–1247, 2013. View at Publisher · View at Google Scholar
  124. B. S. Fleenor, A. L. Sindler, N. K. Marvi et al., “Curcumin ameliorates arterial dysfunction and oxidative stress with aging,” Experimental Gerontology, vol. 48, no. 2, pp. 269–276, 2013. View at Google Scholar
  125. A. Ströhle, M. Wolters, and A. Hahn, “[Food supplements—potential and limits: part 3],” Medizinische Monatsschrift für Pharmazeuten, vol. 36, no. 9, pp. 324–340, 2013. View at Google Scholar
  126. H. Macpherson, A. Pipingas, and M. P. Pase, “Multivitamin-multimineral supplementation and mortality: a meta-analysis of randomized controlled trials,” The American Journal of Clinical Nutrition, vol. 97, no. 2, pp. 437–444, 2013. View at Publisher · View at Google Scholar
  127. G. Bjelakovic, D. Nikolova, and C. Gluud, “Antioxidant supplements and mortality,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 17, no. 1, pp. 40–44, 2014. View at Publisher · View at Google Scholar
  128. A. Krzepiłko, A. Swieciło, J. Wawryn et al., “Ascorbate restores lifespan of superoxide-dismutase deficient yeast,” Free Radical Research, vol. 38, no. 9, pp. 1019–1024, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. P. J. Minogue and J. N. Thomas, “An α-tocopherol dose response study in Paramecium tetraurelia,” Mechanisms of Ageing and Development, vol. 125, no. 1, pp. 21–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. J. N. Thomas and J. Smith-Sonneborn, “Supplemental melatonin increases clonal lifespan in the protozoan Paramecium tetraurelia,” Journal of Pineal Research, vol. 23, no. 3, pp. 123–130, 1997. View at Google Scholar · View at Scopus
  131. M. Sawada and H. E. Enesco, “Vitamin E extends lifespan in the short-lived rotifer Asplanchna brightwelli,” Experimental Gerontology, vol. 19, no. 3, pp. 179–183, 1984. View at Publisher · View at Google Scholar · View at Scopus
  132. N. Ishii, N. Senoo-Matsuda, K. Miyake et al., “Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress,” Mechanisms of Ageing and Development, vol. 125, no. 1, pp. 41–46, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. L. A. Harrington and C. B. Harley, “Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 43, no. 1, pp. 71–78, 1988. View at Google Scholar · View at Scopus
  134. S. Zou, J. Sinclair, M. A. Wilson et al., “Comparative approaches to facilitate the discovery of prolongevity interventions: effects of tocopherols on lifespan of three invertebrate species,” Mechanisms of Ageing and Development, vol. 128, no. 2, pp. 222–226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. V. H. Liao, C. W. Yu, Y. J. Chu, W. H. Li, Y. C. Hsieh, and T. T. Wang, “Curcumin-mediated lifespan extension in Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 132, no. 10, pp. 480–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. F. Surco-Laos, J. Cabello, E. Gómez-Orte et al., “Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans,” Food & Function, vol. 2, no. 8, pp. 445–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Dueñas, F. Surco-Laos, S. González-Manzano et al., “Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans,” Pharmacological Research, vol. 76, pp. 41–48, 2013. View at Publisher · View at Google Scholar
  138. K. Pietsch, N. Saul, S. Chakrabarti, S. R. Stürzenbaum, R. Menzel, and C. E. Steinberg, “Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans,” Biogerontology, vol. 12, no. 4, pp. 329–347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Abbas and M. Wink, “Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans,” Planta Medica, vol. 75, no. 3, pp. 216–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. L. Zhang, G. Jie, J. Zhang, and B. Zhao, “Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress,” Free Radical Biology and Medicine, vol. 46, no. 3, pp. 414–421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. A. A. Sayed, “Ferulsinaic acid attenuation of advanced glycation end products extends the lifespan of Caenorhabditis elegans,” Journal of Pharmacy and Pharmacology, vol. 63, no. 3, pp. 423–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. T. Moriwaki, S. Kato, Y. Kato, A. Hosoki, and Q. M. Zhang-Akiyama, “Extension of lifespan and protection against oxidative stress by an antioxidant herb mixture complex (KPG-7) in Caenorhabditis elegans,” Journal of Clinical Biochemistry and Nutrition, vol. 53, no. 2, pp. 81–88, 2013. View at Google Scholar
  143. M. Keaney and D. Gems, “No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8,” Free Radical Biology and Medicine, vol. 34, no. 2, pp. 277–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  144. J. H. Bauer, S. Goupil, G. B. Garber, and S. L. Helfand, “An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 35, pp. 12980–12985, 2004. View at Publisher · View at Google Scholar · View at Scopus
  145. D. M. Izmaylov and L. K. Obukhova, “Geroprotector effectiveness of melatonin: investigation of lifespan of Drosophila melanogaster,” Mechanisms of Ageing and Development, vol. 106, no. 3, pp. 233–240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  146. B. K. Suckow and M. A. Suckow, “Lifespan extension by the antioxidant curcumin in Drosophila melanogaster,” International Journal of Biomedical Science, vol. 2, no. 4, pp. 402–405, 2006. View at Google Scholar
  147. K. T. Chandrashekara and M. N. Shakarad, “Aloe vera or resveratrol supplementation in larval diet delays adult aging in the fruit fly, Drosophila melanogaster,” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 66, no. 9, pp. 965–971, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. C. Peng, Y. Zuo, K. M. Kwan et al., “Blueberry extract prolongs lifespan of Drosophila melanogaster,” Experimental Gerontology, vol. 47, no. 2, pp. 170–178, 2012. View at Publisher · View at Google Scholar · View at Scopus
  149. T. Magwere, M. West, K. Riyahi, M. P. Murphy, R. A. Smith, and L. Partridge, “The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster,” Mechanisms of Ageing and Development, vol. 127, no. 4, pp. 356–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. R. Banks, J. R. Speakman, and C. Selman, “Vitamin E supplementation and mammalian lifespan,” Molecular Nutrition & Food Research, vol. 54, no. 5, pp. 719–725, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. A. A. Morley and K. J. Trainor, “Lack of an effect of vitamin E on lifespan of mice,” Biogerontology, vol. 2, no. 2, pp. 109–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  152. A. D. Blackett and D. A. Hall, “Vitamin E—its significance in mouse ageing,” Age and Ageing, vol. 10, no. 3, pp. 191–195, 1981. View at Publisher · View at Google Scholar · View at Scopus
  153. M. I. Rodríguez, G. Escames, L. C. López et al., “Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice,” Experimental Gerontology, vol. 43, no. 8, pp. 749–756, 2008. View at Publisher · View at Google Scholar · View at Scopus