Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 414351, 7 pages
http://dx.doi.org/10.1155/2014/414351
Research Article

Catechol-O-methyltransferase (COMT) Genotype Affects Age-Related Changes in Plasticity in Working Memory: A Pilot Study

1Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
2Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
3Social and Preventive Medicine, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
4Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany

Received 3 February 2014; Accepted 12 February 2014; Published 19 March 2014

Academic Editor: Giuseppina Rose

Copyright © 2014 Stephan Heinzel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT) amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults. Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24–30 years) and 25 older (aged 60–75 years) healthy adults. Participants underwent adaptive training in the -back working memory task over 12 sessions under increasing difficulty conditions. Results. Both younger and older adults exhibited sizeable behavioral plasticity through training ( ), which was larger in younger as compared to older adults ( ). Age-related differences were qualified by an interaction with COMT genotype ( ), and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults. Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism.