Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 414351, 7 pages
http://dx.doi.org/10.1155/2014/414351
Research Article

Catechol-O-methyltransferase (COMT) Genotype Affects Age-Related Changes in Plasticity in Working Memory: A Pilot Study

1Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
2Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
3Social and Preventive Medicine, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
4Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany

Received 3 February 2014; Accepted 12 February 2014; Published 19 March 2014

Academic Editor: Giuseppina Rose

Copyright © 2014 Stephan Heinzel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Verhaeghen and T. A. Salthouse, “Meta-analyses of age-cognition relations in adulthood: estimates of linear and nonlinear age effects and structural models,” Psychological Bulletin, vol. 122, no. 3, pp. 231–249, 1997. View at Google Scholar · View at Scopus
  2. S. A. Castner and P. S. Goldman-Rakic, “Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation,” Journal of Neuroscience, vol. 24, no. 6, pp. 1446–1450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Bäckman, S. Karlsson, H. Fischer et al., “Dopamine D1 receptors and age differences in brain activation during working memory,” Neurobiology of Aging, vol. 32, no. 10, pp. 1849–1856, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Fischer, L. Nyberg, S. Karlsson et al., “Simulating neurocognitive aging: effects of a dopaminergic antagonist on brain activity during working memory,” Biological Psychiatry, vol. 67, no. 6, pp. 575–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Diamond, “Consequences of variations in genes that affect dopamine in prefrontal cortex,” Cerebral Cortex, vol. 17, supplement 1, pp. i161–i170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. E. M. Tunbridge, P. J. Harrison, and D. R. Weinberger, “Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond,” Biological Psychiatry, vol. 60, no. 2, pp. 141–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. M. De Frias, K. Annerbrink, L. Westberg, E. Eriksson, R. Adolfsson, and L.-G. Nilsson, “Catechol O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults,” Journal of Cognitive Neuroscience, vol. 17, no. 7, pp. 1018–1025, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. De Frias, P. Marklund, E. Eriksson et al., “Influence of COMT gene polymorphism on fMRI-assessed sustained and transient activity during a working memory task,” Journal of Cognitive Neuroscience, vol. 22, no. 7, pp. 1614–1622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. I. E. Nagel, C. Chicherio, S. C. Li et al., “Human aging magnifies genetic effects on executive functioning and working memory,” Frontiers in Human Neuroscience, vol. 2, article 1, 2008. View at Publisher · View at Google Scholar
  10. M. Aguilera, N. Barrantes-Vidal, B. Arias et al., “Putative role of the COMT gene polymorphism (Val158Met) on verbal working memory functioning in a healthy population,” American Journal of Medical Genetics B, vol. 147, no. 6, pp. 898–902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Blanchard, S. R. Chamberlain, J. Roiser, T. W. Robbins, and U. Müller, “Effects of two dopamine-modulating genes (DAT1 9/10 and COMT Val/Met) on n-back working memory performance in healthy volunteers,” Psychological Medicine, vol. 41, no. 3, pp. 611–618, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. C. Wardle, H. de Wit, I. Penton-Voak, G. Lewis, and M. R. Munafò, “Lack of association between COMT and working memory in a population-based cohort of healthy young adults,” Neuropsychopharmacology, vol. 38, no. 7, pp. 1253–1263, 2013. View at Publisher · View at Google Scholar
  13. J. L. Bolton, R. E. Marioni, I. J. Deary et al., “Association between polymorphisms of the dopamine receptor D2 and catechol-o-methyl transferase genes and cognitive function,” Behavior Genetics, vol. 40, no. 5, pp. 630–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Bäckman and L. Nyberg, “Dopamine and training-related working-memory improvement,” Neuroscience & Biobehavioral Reviews B, vol. 37, no. 9, pp. 2209–2219, 2013. View at Publisher · View at Google Scholar
  15. Y. Brehmer, H. Westerberg, M. Bellander, D. Fürth, S. Karlsson, and L. Bäckman, “Working memory plasticity modulated by dopamine transporter genotype,” Neuroscience Letters, vol. 467, no. 2, pp. 117–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Bellander, Y. Brehmer, H. Westerberg et al., “Preliminary evidence that allelic variation in the LMX1A gene influences training-related working memory improvement,” Neuropsychologia, vol. 49, no. 7, pp. 1938–1942, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Bherer, A. F. Kramer, M. S. Peterson, S. Colcombe, K. Erickson, and E. Becic, “Testing the limits of cognitive plasticity in older adults: application to attentional control,” Acta Psychologica, vol. 123, no. 3, pp. 261–278, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Singer, U. Lindenberger, and P. B. Baltes, “Plasticity of memory for new learning in very old age: a story of major loss?” Psychology and Aging, vol. 18, no. 2, pp. 306–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. O'Hara, E. Miller, C.-P. Liao, N. Way, X. Lin, and J. Hallmayer, “COMT genotype, gender and cognition in community-dwelling, older adults,” Neuroscience Letters, vol. 409, no. 3, pp. 205–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M.-A. Enoch, J. F. Waheed, C. R. Harris, B. Albaugh, and D. Goldman, “COMT Val158Met and cognition: main effects and interaction with educational attainment,” Genes, Brain and Behavior, vol. 8, no. 1, pp. 36–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. C. Morris, A. Heyman, R. C. Mohs et al., “The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease,” Neurology, vol. 39, no. 9, pp. 1159–1165, 1989. View at Google Scholar · View at Scopus
  22. A. Gevins and B. Cutillo, “Spatiotemporal dynamics of component processes in human working memory,” Electroencephalography and Clinical Neurophysiology, vol. 87, no. 3, pp. 128–143, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Heinzel, S. Schulte, J. Onken et al., “Working memory training improvements and gains in non-trained cognitive tasks in young and older adults,” Neuropsychology, Development, and Cognition B, vol. 21, no. 2, pp. 146–173, 2014. View at Publisher · View at Google Scholar
  24. D. Wechsler, Wechsler Memory Scale—Revised: Manual, Psychology Corporation, San Antonio, Tex, USA, 1987.
  25. A. L. Benton and K. Hamsher, Multilingual Aphasia Examination, AJA Associates, Iowa City, Iowa, USA, 1989.
  26. J. Raven, B. Summers, M. Birchfield, G. Brosier, L. Burciaga, and B. Bykrit, “Manual for raven’s progressive matrices and vocabulary scales. Research supplement no. 3: a compendium of North American normative and validity studies,” Oxford Psychologists Press Ltd., 1990.
  27. W. Horn, Leistungspruefsystem LPS, Hogrefe, Goettingen, Germany, 2nd edition, 1983.
  28. M. Lövdén, Y. Brehmer, S.-C. Li, and U. Lindenberger, “Training-induced compensation versus magnification of individual differences in memory performance,” Frontiers in Human Neuroscience, vol. 6, article 141, 2012. View at Publisher · View at Google Scholar
  29. A. Bertolino, G. Blasi, V. Latorre et al., “Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain,” Journal of Neuroscience, vol. 26, no. 15, pp. 3918–3922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Caldú, P. Vendrell, D. Bartrés-Faz et al., “Impact of the COMT Val108/158 Met and DAT genotypes on prefrontal function in healthy subjects,” NeuroImage, vol. 37, no. 4, pp. 1437–1444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. C. Nixon, M. J. Prust, F. Sambataro et al., “Interactive effects of DAOA (G72) and catechol-O-methyltransferase on neurophysiology in prefrontal cortex,” Biological Psychiatry, vol. 69, no. 10, pp. 1006–1008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Grady, “The cognitive neuroscience of ageing,” Nature Reviews Neuroscience, vol. 13, no. 7, pp. 491–505, 2012. View at Publisher · View at Google Scholar
  33. N. Raz, U. Lindenberger, K. M. Rodrigue et al., “Regional brain changes in aging healthy adults: general trends, individual differences and modifiers,” Cerebral Cortex, vol. 15, no. 11, pp. 1676–1689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Heinzel, R. C. Lorenz, W. R. Brockhaus et al., “Working memory load-dependent brain response predicts behavioral training gains in older adults,” The Journal of Neuroscience, vol. 34, no. 4, pp. 1224–1233, 2014. View at Publisher · View at Google Scholar
  35. H. A. Slagter, “Conventional working memory training may not improve intelligence,” Trends in Cognitive Sciences, vol. 16, no. 12, pp. 582–583, 2012. View at Publisher · View at Google Scholar