Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 420856, 7 pages
http://dx.doi.org/10.1155/2014/420856
Research Article

Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation

1College of Information and Communication Technology, Qufu Normal University, Rizhao 276800, China
2College of Electrical Engineering and Automation, Anhui University, Hefei 230000, China
3Intelligent Computing Lab, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230000, China

Received 13 November 2013; Revised 27 December 2013; Accepted 27 December 2013; Published 11 February 2014

Academic Editor: Xing-Ming Zhao

Copyright © 2014 Bin Gan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Cánovas, G. Rincon, A. Islas-Trejo, S. Wickramasinghe, and J. F. Medrano, “SNP discovery in the bovine milk transcriptome using RNA-Seq technology,” Mammalian Genome, vol. 21, no. 11-12, pp. 592–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. T. R. Golub, D. K. Slonim, P. Tamayo et al., “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,” Science, vol. 286, no. 5439, pp. 531–527, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, “Metagenes and molecular pattern discovery using matrix factorization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 12, pp. 4164–4169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Gao and G. Church, “Improving molecular cancer class discovery through sparse non-negative matrix factorization,” Bioinformatics, vol. 21, no. 21, pp. 3970–3975, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. Huang and C. H. Zheng, “Independent component analysis-based penalized discriminant method for tumor classification using gene expression data,” Bioinformatics, vol. 22, no. 15, pp. 1855–1862, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. K. Paul and H. Iba, “Prediction of cancer Class with majority voting genetic programming classifier using gene expression data,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 6, no. 2, pp. 353–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. Zheng, L. Zhang, T. Y. Ng, C. K. Shiu, and D. S. Huang, “Metasample-based sparse representation for tumor classification,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 5, pp. 1273–1282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler, “Support vector machine classification and validation of cancer tissue samples using microarray expression data,” Bioinformatics, vol. 16, no. 10, pp. 906–914, 2000. View at Google Scholar · View at Scopus
  9. Y. S. Lee, A. Krishnan, Q. Zhu, and O. G. Troyanskaya, “Ontology-aware classification of tissue and cell-type signals in gene expression profiles across platforms and technologies,” Bioinformatics, vol. 29, no. 23, pp. 3036–3044, 2013. View at Google Scholar
  10. M. Tanic, E. Andress, S. M. Rodriguez-Pinilla et al., “MicroRNA-based molecular classification of non-BRCA1/2 hereditary breast tumours,” British Journal of Cancer, vol. 109, no. 10, pp. 2724–2734, 2013. View at Google Scholar
  11. J. H. Huang, H. L. Xie, J. Yan, H. M. Lu, Q. S. Xu, and Y. Z. Liang, “Rsing random forest to classify T-cell epitopes based on amino acid properties and molecular features,” Analytica Chimica Acta, vol. 804, pp. 70–75, 2013. View at Google Scholar
  12. L. Nanni, S. Brahnam, S. Ghidoni, E. Menegatti, and T. Barrier, “Acomparison of methods for extracting information from the co-occurrence matrix for subcellular classification,” Expert Systems with Applications, vol. 40, no. 18, pp. 7457–7467, 2013. View at Google Scholar
  13. G. R. Lioyd, L. M. Almond, N. Stone et al., “Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a raman spectroscopic probe,” The Analyst, vol. 139, no. 2, pp. 381–388, 2014. View at Publisher · View at Google Scholar
  14. G. Braz, S. V. da Rocha, M. Gattass, A. C. Silva, and A. C. de Paiva, “A mass classification using spatial diversity approaches in mammography images for false positive reduction,” Expert Systems with Applications, vol. 40, no. 18, pp. 7534–7543, 2013. View at Google Scholar
  15. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised dictionary learning,” in Proceedings of the 22nd Annual Conference on Neural Information Processing Systems (NIPS '09), 2009. View at Scopus
  19. G. C. Liu, Z. C. Lin, S. C. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace structures by low-rank representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 171–184, 2013. View at Google Scholar
  20. G. Liu and S. C. Yan, “Latent low-rank representation for subspace segmentation and feature extraction,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV '11), pp. 1615–1622, Barcelona, Spain, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. G. C. Liu, Z. C. Lin, and Y. Yu, “Robust subspace segmentation by low-rank representation,” in Proceedings of the 27th International Conference on Machine Learning (ICML '10), pp. 663–670, 2010. View at Scopus
  22. G. C. Liu, H. Xu, and S. C. Yan, “Exact subspace segmentation and outlier detection by low-rank representation,” JMLR: Workshop and Conference Proceedings, vol. 22, pp. 703–711, 2012. View at Google Scholar
  23. L. Ma, C. H. Wang, B. H. Xiao, and W. Zhou, “Sparse representation for face recognition based on discriminative low-rank dictionary learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12), pp. 2586–2593, June 2012.
  24. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406–5425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Tibshirani, “Regression shrinkage and selection via the lasso: a retrospective,” Journal of the Royal Statistical Society B, vol. 73, no. 3, pp. 273–282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the IEEE, vol. 98, no. 6, pp. 925–936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,” Foundations of Computational Mathematics, vol. 9, no. 6, pp. 717–772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion from noisy entries,” Journal of Machine Learning Research, vol. 11, pp. 2057–2078, 2010. View at Google Scholar · View at Scopus
  31. M. Fazel, Matrix rank minimization with applications [Ph.D. thesis], Stanford University, Stanford, Calif, USA, 2002.
  32. Y. Ni, J. Sun, X. Yuan, S. Yan, and L. F. Cheong, “Robust low-rank subspace segmentation with semidefinite guarantees,” in Proceedings of the 10th IEEE International Conference on Data Mining Workshops (ICDMW '10), pp. 1179–1188, Sydney, Australia, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices,” Tech. Rep. UILU-ENG-09-2215, 2009. View at Google Scholar
  34. X. Hang and F. X. Wu, “Sparse representation for classification of tumors using gene expression data,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 403689, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Ghosh and A. M. Chinnaiyan, “Classification and selection of biomarkers in genomic data using LASSO,” Journal of Biomedicine and Biotechnology, vol. 2005, no. 2, pp. 147–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis,” Bioinformatics, vol. 21, no. 5, pp. 631–643, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Pochet, F. de Smet, J. A. K. Suykens, and B. L. R. de Moor, “Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction,” Bioinformatics, vol. 20, no. 17, pp. 3185–3195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. U. Alon, N. Barka, D. A. Notterman et al., “Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 6745–6750, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Singh, P. G. Febbo, K. Ross et al., “Gene expression correlates of clinical prostate cancer behavior,” Cancer Cell, vol. 1, no. 2, pp. 203–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Shipp, K. N. Ross, P. Tamayo et al., “Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning,” Nature Medicine, vol. 8, no. 1, pp. 68–74, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Bhattacharjee, W. G. Richards, J. Staunton et al., “Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13790–13795, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. S. A. Armstrong, J. E. Staunton, L. B. Silverman et al., “MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia,” Nature Genetics, vol. 30, no. 1, pp. 41–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. A. I. Su, J. B. Welsh, L. M. Sapinoso et al., “Molecular classification of human carcinomas by use of gene expression signatures,” Cancer Research, vol. 61, no. 20, pp. 7388–7393, 2001. View at Google Scholar · View at Scopus
  44. J. E. Staunton, D. K. Slonim, H. A. Coller et al., “Chemosensitivity prediction by transcriptional profiling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10787–10792, 2001. View at Publisher · View at Google Scholar · View at Scopus