Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 429031, 14 pages
http://dx.doi.org/10.1155/2014/429031
Review Article

The Role of Physical Exercise in Inflammatory Bowel Disease

1Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-531 Cracow, Poland
2Gastroenterology Clinic, Jagiellonian University Medical College, 31-501 Cracow, Poland
3Department of Physiology, Faculty of Medicine Jagiellonian University Medical College, 31-531 Cracow, Poland

Received 1 January 2014; Revised 25 February 2014; Accepted 5 March 2014; Published 30 April 2014

Academic Editor: Lars L. Andersen

Copyright © 2014 Jan Bilski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. M. Beavers, T. E. Brinkley, and B. J. Nicklas, “Effect of exercise training on chronic inflammation,” Clinica Chimica Acta, vol. 411, no. 11-12, pp. 785–793, 2010. View at Google Scholar · View at Scopus
  2. F. Shanahan, “Crohn's disease,” The Lancet, vol. 359, no. 9300, pp. 62–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Terzić, S. Grivennikov, E. Karin, and M. Karin, “Inflammation and colon cancer,” Gastroenterology, vol. 138, no. 6, pp. 2101–2114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. C. Baumgart and W. J. Sandborn, “Inflammatory bowel disease: clinical aspects and established and evolving therapies,” The Lancet, vol. 369, no. 9573, pp. 1641–1657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. B. Sartor, “Mechanisms of disease: Pathogenesis of Crohn's disease and ulcerative colitis,” Nature Clinical Practice Gastroenterology and Hepatology, vol. 3, no. 7, pp. 390–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Strober and I. J. Fuss, “Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases,” Gastroenterology, vol. 140, no. 6, pp. 1756–1767, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Strober, F. Zhang, A. Kitani, I. Fuss, and S. Fichtner-Feigl, “Proinflammatory cytokines underlying the inflammation of Crohn's disease,” Current Opinion in Gastroenterology, vol. 26, no. 4, pp. 310–317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Dohi, A. Borodovsky, P. Wu et al., “TWEAK/Fn14 pathway: a nonredundant role in intestinal damage in mice through a TWEAK/intestinal epithelial cell axis,” Gastroenterology, vol. 136, no. 3, pp. 912–923, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Dohi and L. C. Burkly, “The TWEAK/Fn14 pathway as an aggravating and perpetuating factor in inflammatory diseases: focus on inflammatory bowel diseases,” Journal of Leukocyte Biology, vol. 92, no. 2, pp. 265–279, 2012. View at Publisher · View at Google Scholar
  10. A. Son, T. Oshio, Y. I. Kawamura et al., “TWEAK/Fn14 pathway promotes a T helper 2-type chronic colitis with fibrosis in mice,” Mucosal Immunology, vol. 6, no. 6, pp. 1131–1142, 2013. View at Publisher · View at Google Scholar
  11. L. C. Burkly and T. Dohi, “The TWEAK/Fn14 pathway in tissue remodeling: for better or for worse,” Advances in Experimental Medicine and Biology, vol. 691, pp. 305–322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. J. Caspersen, K. E. Powell, and G. Christenson, “Physical activity, exercise and physical fitness: definitions and distinctions for health-related research,” Public Health Reports, vol. 100, no. 2, pp. 126–131, 1985. View at Google Scholar · View at Scopus
  13. K. R. Wilund, “Is the anti-inflammatory effect of regular exercise responsible for reduced cardiovascular disease?” Clinical Science, vol. 112, no. 11-12, pp. 543–555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Hoffman-Goetz and B. K. Pedersen, “Exercise and the immune system: a model of the stress response?” Immunology Today, vol. 15, no. 8, pp. 382–387, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. B. K. Pedersen and D. C. Nieman, “Exercise immunology: integration and regulation,” Immunology Today, vol. 19, no. 5, pp. 204–206, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Fitzgerald, “Exercise and the immune system,” Immunology Today, vol. 9, no. 11, pp. 337–339, 1988. View at Google Scholar · View at Scopus
  17. S. A. Bartram, R. T. Peaston, D. J. Rawlings, D. Walshaw, R. M. Francis, and N. P. Thompson, “Mutifactorial analysis of risk factors for reduced bone mineral density in patients with Crohn's disease,” World Journal of Gastroenterology, vol. 12, no. 35, pp. 5680–5686, 2006. View at Google Scholar · View at Scopus
  18. N. P. Walsh, M. Gleeson, D. B. Pyne et al., “Position statement part two: maintaining immune health,” Exercise Immunology Review, vol. 17, pp. 64–103, 2011. View at Google Scholar · View at Scopus
  19. N. P. Walsh, M. Gleeson, R. J. Shephard et al., “Position statement. Part one: immune function and exercise,” Exercise Immunology Review, vol. 17, pp. 6–63, 2011. View at Google Scholar
  20. G. W. K. Ho, “Lower gastrointestinal distress in endurance athletes,” Current Sports Medicine Reports, vol. 8, no. 2, pp. 85–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Kruk and U. Czerniak, “Physical activity and its relation to cancer risk: updating the evidence,” Asian Pacific Organization for Cancer Prevention, vol. 14, no. 7, pp. 3993–4003, 2013. View at Google Scholar
  22. V. Ng, W. Millard, C. Lebrun, and J. Howard, “Exercise and Crohn's disease: speculations on potential benefits,” Canadian Journal of Gastroenterology, vol. 20, no. 10, pp. 657–660, 2006. View at Google Scholar · View at Scopus
  23. C. A. Pérez, “Prescription of physical exercise in Crohn's disease,” Journal of Crohn's and Colitis, vol. 3, no. 4, pp. 225–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Narula and R. N. Fedorak, “Exercise and inflammatory bowel disease,” Canadian Journal of Gastroenterology, vol. 22, no. 5, pp. 497–504, 2008. View at Google Scholar · View at Scopus
  25. N. Packer, L. Hoffman-Goetz, and G. Ward, “Does physical activity affect quality of life, disease symptoms and immune measures in patients with inflammatory bowel disease? A systematic review,” Journal of Sports Medicine and Physical Fitness, vol. 50, no. 1, pp. 1–18, 2010. View at Google Scholar · View at Scopus
  26. J. Cosnes, C. Gowerrousseau, P. Seksik, and A. Cortot, “Epidemiology and natural history of inflammatory bowel diseases,” Gastroenterology, vol. 140, no. 6, pp. 1785–1794, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Lobstein, L. Baur, and R. Uauy, “Obesity in children and young people: a crisis in public health,” Obesity Reviews, vol. 5, supplement 1, pp. 4–104, 2004. View at Google Scholar · View at Scopus
  28. A. Sonnenberg, “Occupational distribution of inflammatory bowel disease among German employees,” Gut, vol. 31, no. 9, pp. 1037–1040, 1990. View at Google Scholar · View at Scopus
  29. P.-G. Persson, C.-E. Leijonmarck, O. Bernell, G. Hellers, and A. Ahlbom, “Risk indicators for inflammatory bowel disease,” International Journal of Epidemiology, vol. 22, no. 2, pp. 268–272, 1993. View at Google Scholar · View at Scopus
  30. H. Boggild, F. Tuchsen, and E. Orhede, “Occupation, employment status and chronic inflammatory bowel disease in Denmark,” International Journal of Epidemiology, vol. 25, no. 3, pp. 630–637, 1996. View at Google Scholar
  31. I. Klein, S. Reif, H. Farbstein, A. Halak, and T. Gilat, “Preillness non dietary factors and habits in inflammatory bowel disease,” Italian Journal of Gastroenterology and Hepatology, vol. 30, no. 3, pp. 247–251, 1998. View at Google Scholar · View at Scopus
  32. C. Cucino and A. Sonnenberg, “Occupational mortality from inflammatory bowel disease in the United States 1991–1996,” The American Journal of Gastroenterology, vol. 96, no. 4, pp. 1101–1105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Halfvarson, T. Jess, A. Magnuson et al., “Environmental factors in inflammatory bowel disease: a co-twin control study of a Swedish-Danish twin population,” Inflammatory Bowel Diseases, vol. 12, no. 10, pp. 925–933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. S. Chan, R. Luben, A. Olsen et al., “Body mass index and the risk for Crohn's disease and ulcerative colitis: data from a European Prospective Cohort Study (The IBD in EPIC Study),” The American Journal of Gastroenterology, vol. 108, no. 4, pp. 575–582, 2013. View at Publisher · View at Google Scholar
  35. T. Hlavaty, J. Toth, T. Koller et al., “Smoking, breastfeeding, physical inactivity, contact with animals, and size of the family influence the risk of inflammatory bowel disease: a Slovak case-control study,” United European Gastroenterology Journal, 2013. View at Google Scholar
  36. H. Khalili, A. N. Ananthakrishnan, G. G. Konijeti et al., “Physical activity and risk of inflammatory bowel disease: prospective study from the Nurses' Health Study cohorts,” British Medical Journal, vol. 347, 2013. View at Publisher · View at Google Scholar
  37. J. Bilski, A. I. Mazur-Bialy, M. Wierdak et al., “The impact of physical activity and nutrition on inflammatory bowel disease: the potential role of cross talk between adipose tissue and skeletal muscle,” The Journal of Physiology and Pharmacology, vol. 64, no. 2, pp. 143–155, 2013. View at Google Scholar
  38. C. P. Loudon, V. Corroll, J. Butcher, P. Rawsthorne, and C. N. Bernstein, “The effects of physical exercise on patients with Crohn's disease,” The American Journal of Gastroenterology, vol. 94, no. 3, pp. 697–703, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Ng, W. Millard, C. Lebrun, and J. Howard, “Low-intensity exercise improves quality of life in patients with Crohn's disease,” Clinical Journal of Sport Medicine, vol. 17, no. 5, pp. 384–388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Gupta, S. Khera, R. P. Vempati, R. Sharma, and R. L. Bijlani, “Effect of yoga based lifestyle intervention on state and trait anxiety,” Indian Journal of Physiology and Pharmacology, vol. 50, no. 1, pp. 41–47, 2006. View at Google Scholar · View at Scopus
  41. I. Nathan, C. Norton, W. Czuber-Dochan et al., “Exercise in individuals with inflammatory bowel disease,” Gastroenterology Nursing, vol. 36, no. 6, pp. 437–442, 2013. View at Publisher · View at Google Scholar
  42. R. D'Incà, M. Varnier, C. Mestriner, D. Martines, A. D'Odorico, and G. C. Sturniolo, “Effect of moderate exercise on Crohn's disease patients in remission,” Italian Journal of Gastroenterology and Hepatology, vol. 31, no. 3, pp. 205–210, 1999. View at Google Scholar · View at Scopus
  43. S. T. Nic, T. C. Raftery, O. McMahon et al., “High prevalence of overweight and obesity in adults with Crohn's disease: associations with disease and lifestyle factors,” Journal of Crohn's and Colitis, vol. 7, no. 7, pp. e241–e248, 2013. View at Google Scholar
  44. H. Ploeger, J. Obeid, T. Nguyen et al., “Exercise and inflammation in pediatric Crohn's disease,” International Journal of Sports Medicine, vol. 33, no. 8, pp. 671–679, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Chan, H. Robbins, S. Rogers et al., “Inflammatory bowel disease and exercise: results of a Crohn's and Colitis UK survey,” Frontline Gastroenterology, vol. 5, no. 1, pp. 44–48, 2014. View at Publisher · View at Google Scholar
  46. M. D. Cook, S. A. Martin, C. Williams et al., “Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis,” Brain, Behavior, and Immunity, pp. 46–56, 2013. View at Publisher · View at Google Scholar
  47. X.-Z. Shi, J. H. Winston, and S. K. Sarna, “Differential immune and genetic responses in rat models of Crohn's colitis and ulcerative colitis,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 300, no. 1, pp. G41–G51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Saxena, E. Fletcher, B. Larsen et al., “Effect of exercise on chemically-induced colitis in adiponectin deficient mice,” Journal of Inflammation, vol. 9, no. 1, article 30, 2012. View at Publisher · View at Google Scholar
  49. L. Hoffman-Goetz, N. Pervaiz, N. Packer, and J. Guan, “Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes,” Brain, Behavior, and Immunity, vol. 24, no. 7, pp. 1105–1115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Hoffman-Goetz, R. J. Thorne, and M. E. Houston, “Splenic immune responses following treadmill exercise in mice,” Canadian Journal of Physiology and Pharmacology, vol. 66, no. 11, pp. 1415–1419, 1988. View at Google Scholar · View at Scopus
  51. L. Hoffman-Goetz, P. A. Spagnuolo, and J. Guan, “Repeated exercise in mice alters expression of IL-10 and TNF-α in intestinal lymphocytes,” Brain, Behavior, and Immunity, vol. 22, no. 2, pp. 195–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Luo, D. Xiang, D. C. Nieman et al., “The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense,” Brain, Behavior, and Immunity, 2013. View at Publisher · View at Google Scholar
  53. M. D. Kappelman, S. L. Rifas-Shiman, K. Kleinman et al., “The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States,” Clinical Gastroenterology and Hepatology, vol. 5, no. 12, pp. 1424–1429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. B. K. Pedersen and M. A. Febbraio, “Muscles, exercise and obesity: skeletal muscle as a secretory organ,” Nature Reviews Endocrinology, vol. 8, no. 8, pp. 457–465, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. A. L. Sheehan, B. F. Warren, M. W. L. Gear, and N. A. Shepherd, “Fat-wrapping in Crohn's disease: pathological basis and relevance to surgical practice,” British Journal of Surgery, vol. 79, no. 9, pp. 955–958, 1992. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Peyrin-Biroulet, F. Gonzalez, L. Dubuquoy et al., “Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn's disease,” Gut, vol. 61, no. 1, pp. 78–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Peyrin-Biroulet, M. Chamaillard, F. Gonzalez et al., “Mesenteric fat in Crohn's disease: a pathogenetic hallmark or an innocent bystander?” Gut, vol. 56, no. 4, pp. 577–583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Kaser and H. Tilg, ““Metabolic aspects” in inflammatory bowel diseases,” Current Drug Delivery, vol. 9, no. 4, pp. 326–332, 2012. View at Publisher · View at Google Scholar
  59. A. Batra, M. M. Heimesaat, S. Bereswill et al., “Mesenteric fat-control site for bacterial translocation in colitis?” Mucosal Immunology, vol. 5, no. 5, pp. 580–591, 2012. View at Google Scholar
  60. C. Fink, I. Karagiannides, K. Bakirtzi, and C. Pothoulakis, “Adipose tissue and inflammatory bowel disease pathogenesis,” Inflammatory Bowel Diseases, vol. 18, no. 8, pp. 1550–1557, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Drouet, L. Dubuquoy, P. Desreumaux, and B. Bertin, “Visceral fat and gut inflammation,” Nutrition, vol. 28, no. 2, pp. 113–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. S. C. Acedo, É. M. F. Gotardo, J. M. Lacerda, C. C. de Oliveira, P. de Oliveira Carvalho, and A. Gambero, “Perinodal adipose tissue and mesenteric lymph node activation during reactivated TNBS-colitis in rats,” Digestive Diseases and Sciences, vol. 56, no. 9, pp. 2545–2552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. L. I. Kredel, A. Batra, T. Stroh et al., “Adipokines from local fat cells shape the macrophage compartment of the creeping fat in Crohn's disease,” Gut, vol. 62, no. 6, pp. 852–862, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. S. H. Jung, A. Saxena, K. Kaur et al., “The role of adipose tissue-associated macrophages and T lymphocytes in the pathogenesis of inflammatory bowel disease,” Cytokine, vol. 61, no. 2, pp. 459–468, 2013. View at Publisher · View at Google Scholar
  65. G. Monteleone, F. Pallone, and T. T. MacDonald, “Emerging immunological targets in inflammatory bowel disease,” Current Opinion in Pharmacology, vol. 11, no. 6, pp. 640–645, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. T. T. MacDonald, I. Monteleone, M. C. Fantini, and G. Monteleone, “Regulation of homeostasis and inflammation in the intestine,” Gastroenterology, vol. 140, no. 6, pp. 1768–1775, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. A. M. Mowat and C. C. Bain, “Mucosal macrophages in intestinal homeostasis and inflammation,” Journal of Innate Immunity, vol. 3, no. 6, pp. 550–564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. I. C. Roberts-Thomson, J. Fon, W. Uylaki, A. G. Cummins, and S. Barry, “Cells, cytokines and inflammatory bowel disease: a clinical perspective,” Expert Review of Gastroenterology and Hepatology, vol. 5, no. 6, pp. 703–716, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. J. H. Cho, “The genetics and immunopathogenesis of inflammatory bowel disease,” Nature Reviews Immunology, vol. 8, no. 6, pp. 458–466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Shelley-Fraser, N. R. Borley, B. F. Warren, and N. A. Shepherd, “The connective tissue changes of Crohn's disease,” Histopathology, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. N. R. Borley, N. J. Mortensen, D. P. Jewell et al., “The relationship between inflammatory and serosal connective tissue changes in ileal Crohn's disease: evidence for a possible causative link,” The Journal of Pathology, vol. 190, no. 2, pp. 196–202, 2000. View at Publisher · View at Google Scholar
  72. I. Olivier, V. Théodorou, P. Valet et al., “Is Crohn's creeping fat an adipose tissue?” Inflammatory Bowel Diseases, vol. 17, no. 3, pp. 747–757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. S. J. McCaskey, E. A. Rondini, I. M. Langohr, and J. I. Fenton, “Differential effects of energy balance on experimentally-induced colitis,” World Journal of Gastroenterology, vol. 18, no. 7, pp. 627–636, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Ponemone, A. Keshavarzian, M. I. Brand et al., “Apoptosis and inflammation: role of adipokines in inflammatory bowel disease,” Clinical and Translational Gastroenterology, vol. 1, no. 10, article e1, 2010. View at Publisher · View at Google Scholar
  75. G. Biesiada, J. Czepiel, A. Ptak-Belowska et al., “Expression and release of leptin and proinflammatory cytokines in patients with ulcerative colitis and infectious diarrhea,” The Journal of Physiology and Pharmacology, vol. 63, no. 5, pp. 471–481, 2012. View at Google Scholar
  76. M. Barbier, H. Vidal, P. Desreumaux et al., “Overexpression of leptin mRNA in mesenteric adipose tissue in inflammatory bowel diseases,” Gastroenterologie Clinique et Biologique, vol. 27, no. 11, pp. 987–991, 2003. View at Google Scholar · View at Scopus
  77. M. Barbier, C. Cherbut, A. C. Aubé, H. M. Blottière, and J. P. Galmiche, “Elevated plasma leptin concentrations in early stages of experimental intestinal inflammation in rats,” Gut, vol. 43, no. 6, pp. 783–790, 1998. View at Google Scholar · View at Scopus
  78. U. P. Singh, N. P. Singh, H. Guan et al., “Leptin antagonist ameliorates chronic colitis in IL-10-/- mice,” Immunobiology, vol. 218, no. 12, pp. 1439–1451, 2013. View at Google Scholar
  79. K. Yamamoto, T. Kiyohara, Y. Murayama et al., “Production of adiponectin, an anti-inflammatory protein, in mesenteric adipose tissue in Crohn's disease,” Gut, vol. 54, no. 6, pp. 789–796, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. V. S. Rodrigues, M. Milanski, J. J. Fagundes et al., “Serum levels and mesenteric fat tissue expression of adiponectin and leptin in patients with Crohn's disease,” Clinical & Experimental Immunology, vol. 170, no. 3, pp. 358–364, 2012. View at Publisher · View at Google Scholar
  81. M. Chandran, S. A. Phillips, T. Ciaraldi, and R. R. Henry, “Adiponectin: more than just another fat cell hormone?” Diabetes Care, vol. 26, no. 8, pp. 2442–2450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Schaffler, J. Scholmerich, and C. Buchler, “Mechanisms of disease: adipocytokines and visceral adipose tissue—emerging role in intestinal and mesenteric diseases,” Nature Clinical Practice Gastroenterology & Hepatology, vol. 2, no. 2, pp. 103–111, 2005. View at Google Scholar
  83. A. Schäffler and H. Herfarth, “Creeping fat in Crohn's disease: travelling in a creeper lane of research,” Gut, vol. 54, no. 6, pp. 742–744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Weigert, F. Obermeier, M. Neumeier et al., “Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn's disease,” Inflammatory Bowel Diseases, vol. 16, no. 4, pp. 630–637, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. L. Valentini, E. K. Wirth, U. Schweizer et al., “Circulating adipokines and the protective effects of hyperinsulinemia in inflammatory bowel disease,” Nutrition, vol. 25, no. 2, pp. 172–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Karmiris, I. E. Koutroubakis, and E. A. Kouroumalis, “Leptin, adiponectin, resistin, and ghrelin—implications for inflammatory bowel disease,” Molecular Nutrition and Food Research, vol. 52, no. 8, pp. 855–866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Schäffler and J. Schölmerich, “The role of adiponectin in inflammatory gastrointestinal diseases,” Gut, vol. 58, no. 3, pp. 317–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Schäffler, J. Scholmerich, and C. Buchler, “Mechanisms of disease: adipocytokines and visceral adipose tissue—emerging role in intestinal and mesenteric diseases,” Nature Reviews Gastroenterology and Hepatology, vol. 2, no. 2, pp. 103–111, 2005. View at Publisher · View at Google Scholar
  89. A. Zulian, R. Cancello, G. Micheletto et al., “Visceral adipocytes: old actors in obesity and new protagonists in Crohn's disease?” Gut, vol. 61, no. 1, pp. 86–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Paul, A. Schäffler, M. Neumeier et al., “Profiling adipocytokine secretion from creeping fat in Crohn's disease,” Inflammatory Bowel Diseases, vol. 12, no. 6, pp. 471–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Karmiris, I. E. Koutroubakis, and E. A. Kouroumalis, “The emerging role of adipocytokines as inflammatory mediators in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 11, no. 9, pp. 847–855, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Bortoli, N. Pedersen, D. Duricova et al., “Pregnancy outcome in inflammatory bowel disease: prospective European case-control ECCO-EpiCom study, 2003–2006,” Alimentary Pharmacology and Therapeutics, vol. 34, no. 7, pp. 724–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. B. K. Pedersen and B. Saltin, “Evidence for prescribing exercise as therapy in chronic disease,” Scandinavian Journal of Medicine and Science in Sports, vol. 16, no. 1, pp. 3–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. M. A. Febbraio, S. Rose-John, and B. K. Pedersen, “Is interleukin-6 receptor blockade the holy grail for inflammatory diseases?” Clinical Pharmacology and Therapeutics, vol. 87, no. 4, pp. 396–398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Keller, Y. Hellsten, A. Steensberg, and B. Klarlund Pedersen, “Differential regulation of IL-6 and TNF-α via calcineurin in human skeletal muscle cells,” Cytokine, vol. 36, no. 3-4, pp. 141–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Ellingsgaard, I. Hauselmann, B. Schuler et al., “Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells,” Nature Medicine, vol. 17, no. 11, pp. 1481–1489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. P. L. Brubaker and D. J. Drucker, “Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system,” Endocrinology, vol. 145, no. 6, pp. 2653–2659, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. D. J. Drucker, B. Yusta, R. P. Boushey, L. DeForest, and P. L. Brubaker, “Human [Gly2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 276, no. 1, pp. G79–G91, 1999. View at Google Scholar · View at Scopus
  99. M. S. Geier, D. Tenikoff, R. Yazbeck, G. W. McCaughan, C. A. Abbott, and G. S. Howarth, “Development and resolution of experimental colitis in mice with targeted deletion of dipeptidyl peptidase IV,” Journal of Cellular Physiology, vol. 204, no. 2, pp. 687–692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. R. Yazbeck, G. S. Howarth, M. S. Geier, H.-U. Demuth, and C. A. Abbott, “Inhibiting dipeptidyl peptidase activity partially ameliorates colitis in mice,” Frontiers in Bioscience, vol. 13, no. 18, pp. 6850–6858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. A. R. Nielsen, R. Mounier, P. Plomgaard et al., “Expression of interleukin-15 in human skeletal muscle—effect of exercise and muscle fibre type composition,” The Journal of Physiology, vol. 584, no. 1, pp. 305–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. L. S. Quinn, B. G. Anderson, L. Strait-Bodey, A. M. Stroud, and J. M. Argués, “Oversecretion of interleukin-15 from skeletal muscle reduces adiposity,” American Journal of Physiology: Endocrinology and Metabolism, vol. 296, no. 1, pp. E191–E202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. L. S. Quinn, L. Strait-Bodey, B. G. Anderson, J. M. Argilés, and P. J. Havel, “Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: Evidence for a skeletal muscle-to-fat signaling pathway,” Cell Biology International, vol. 29, no. 6, pp. 449–457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. P. Boström, J. Wu, M. P. Jedrychowski et al., “A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis,” Nature, vol. 481, no. 7382, pp. 463–468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. P. A. Bostrom, E. L. Graham, A. Georgiadi et al., “Impact of exercise on muscle and nonmuscle organs,” IUBMB Life, vol. 65, no. 10, pp. 845–850, 2013. View at Google Scholar
  106. W. Aoi, Y. Naito, T. Takagi et al., “A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise,” Gut, vol. 62, no. 6, pp. 882–889, 2013. View at Google Scholar
  107. R. Vadan, L. S. Gheorghe, A. Constantinescu, and C. Gheorghe, “The prevalence of malnutrition and the evolution of nutritional status in patients with moderate to severe forms of Crohn's disease treated with Infliximab,” Clinical Nutrition, vol. 30, no. 1, pp. 86–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. J.-B. Wiroth, J. Filippi, S. M. Schneider et al., “Muscle performance in patients with Crohn's disease in clinical remission,” Inflammatory Bowel Diseases, vol. 11, no. 3, pp. 296–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Schneider, R. Al-Jaouni, J. Filippi et al., “Sarcopenia is prevalent in patients with Crohn's disease in clinical remission,” Inflammatory Bowel Diseases, vol. 14, no. 11, pp. 1562–1568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. D. R. van Langenberg, P. D. Gatta, B. Hill et al., “Delving into disability in Crohn's disease: dysregulation of molecular pathways may explain skeletal muscle loss in Crohn's disease,” Journal of Crohn's and Colitis, 2013. View at Publisher · View at Google Scholar
  111. R. Shamir, M. Phillip, and A. Levine, “Growth retardation in pediatric Crohn's disease: pathogenesis and interventions,” Inflammatory Bowel Diseases, vol. 13, no. 5, pp. 620–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. R. A. Frost and C. H. Lang, “Alteration of somatotropic function by proinflammatory cytokines,” Journal of Animal Science, vol. 82, pp. E100–E109, 2004. View at Google Scholar · View at Scopus
  113. R. A. Frost, G. J. Nystrom, L. S. Jefferson, and C. H. Lang, “Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle,” American Journal of Physiology: Endocrinology and Metabolism, vol. 292, no. 2, pp. E501–E512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. C. H. Lang, L. Hong-Brown, and R. A. Frost, “Cytokine inhibition of JAK-STAT signaling: a new mechanism of growth hormone resistance,” Pediatric Nephrology, vol. 20, no. 3, pp. 306–312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Ballinger, “Fundamental mechanisms of growth failure in inflammatory bowel disease,” Hormone Research, vol. 58, no. 1, pp. 7–10, 2002. View at Google Scholar · View at Scopus
  116. A. B. Ballinger, O. Azooz, T. El-Haj, S. Poole, and M. J. G. Farthing, “Growth failure occurs through a decrease in insulin-like growth factor 1 which is independent of undernutrition in a rat model of colitis,” Gut, vol. 46, no. 5, pp. 694–700, 2000. View at Google Scholar · View at Scopus
  117. L. B. Verdijk, B. G. Gleeson, R. A. M. Jonkers et al., “Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men,” Journals of Gerontology A, vol. 64, no. 3, pp. 332–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. S. M. Hindi, V. Mishra, S. Bhatnagar et al., “Regulatory circuitry of TWEAK-Fn14 system and PGC-1a in skeletal muscle atrophy program,” The FASEB Journal, vol. 28, no. 3, pp. 1398–1411, 2013. View at Google Scholar
  119. M. M. Tajrishi, T. S. Zheng, L. C. Burkly et al., “The TWEAK-Fn14 pathway: a potent regulator of skeletal muscle biology in health and disease,” Cytokine & Growth Factor Reviews, 2013. View at Google Scholar
  120. Z. Uhrin, S. Kuzis, and M. M. Ward, “Exercise and changes in health status in patients with ankylosing spondylitis,” Archives of Internal Medicine, vol. 160, no. 19, pp. 2969–2975, 2000. View at Google Scholar · View at Scopus
  121. J. S. Siffledeen, K. Siminoski, H. Jen, and R. N. Fedorak, “Vertebral fractures and role of low bone mineral density in Crohn's disease,” Clinical Gastroenterology and Hepatology, vol. 5, no. 6, pp. 721–728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. R. J. Robinson, T. Krzywicki, L. Almond et al., “Effect of a low-impact exercise program on bone mineral density in Crohn's disease: a randomized controlled trial,” Gastroenterology, vol. 115, no. 1, pp. 36–41, 1998. View at Publisher · View at Google Scholar · View at Scopus
  123. N. Lee, G. L. Radford-Smith, M. Forwood, J. Wong, and D. R. Taaffe, “Body composition and muscle strength as predictors of bone mineral density in Crohn's disease,” Journal of Bone and Mineral Metabolism, vol. 27, no. 4, pp. 456–463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. N. Lee, G. Radford-Smith, and D. R. Taaffe, “Bone loss in Crohn's disease: exercise as a potential countermeasure,” Inflammatory Bowel Diseases, vol. 11, no. 12, pp. 1108–1118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Bilski, G. Manko, T. Brzozowski et al., “Effects of exercise of different intensity on gut peptides, energy intake and appetite in young males,” Annals of Agricultural and Environmental Medicine, vol. 20, no. 4, pp. 787–793, 2013. View at Google Scholar
  126. J. Jaworek, J. Bonior, S. J. Konturek, J. Bilski, A. Szlachcic, and W. W. Pawlik, “Role of leptin in the control of postprandial pancreatic enzyme secretion,” The Journal of Physiology and Pharmacology, vol. 54, no. 4, pp. 591–602, 2003. View at Google Scholar · View at Scopus
  127. Z. Warzecha, A. Dembiński, P. Ceranowicz et al., “Influence of leptin administration on the course of acute ischemic pancreatitis,” The Journal of Physiology and Pharmacology, vol. 53, no. 4, pp. 775–790, 2002. View at Google Scholar · View at Scopus
  128. A. Ballinger, “Divergency of leptin response in intestinal inflammation,” Gut, vol. 44, no. 5, pp. 588–589, 1999. View at Google Scholar · View at Scopus
  129. I. M. Minderhoud, M. Samsom, and B. Oldenburg, “Crohn's disease, fatigue, and infliximab: is there a role for cytokines in the pathogenesis of fatigue?” World Journal of Gastroenterology, vol. 13, no. 14, pp. 2089–2093, 2007. View at Google Scholar · View at Scopus
  130. D. R. van Langenberg and P. R. Gibson, “Factors associated with physical and cognitive fatigue in patients with Crohn's Disease: a cross-sectional and longitudinal Study,” Inflammatory Bowel Diseases, vol. 20, no. 1, pp. 115–125, 2014. View at Google Scholar
  131. F. Blondel-Kucharski, C. Chircop, P. Marquis et al., “Health-related quality of life in Crohn's disease: a prospective longitudinal study in 231 patients,” The American Journal of Gastroenterology, vol. 96, no. 10, pp. 2915–2920, 2001. View at Publisher · View at Google Scholar · View at Scopus
  132. I. M. Minderhoud, B. Oldenburg, J. A. Wismeijer, G. P. van Berge Henegouwen, and A. J. P. M. Smout, “IBS-like symptoms in patients with inflammatory bowel disease in remission; relationships with quality of life and coping behavior,” Digestive Diseases and Sciences, vol. 49, no. 3, pp. 469–474, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. E. Ball, “Exercise guidelines for patients with inflammatory bowel disease,” Gastroenterology Nursing, vol. 21, no. 3, pp. 108–111, 1998. View at Publisher · View at Google Scholar
  134. M. J. Gibala, J. P. Little, M. J. Macdonald, and J. A. Hawley, “Physiological adaptations to low-volume, high-intensity interval training in health and disease,” The Journal of Physiology, vol. 590, no. 5, pp. 1077–1084, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. K. A. Burgomaster, K. R. Howarth, S. M. Phillips et al., “Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans,” The Journal of Physiology, vol. 586, no. 1, pp. 151–160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. I. Janssen and A. G. LeBlanc, “Systematic review of the health benefits of physical activity and fitness in school-aged children and youth,” International Journal of Behavioral Nutrition and Physical Activity, vol. 7, article 40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. W. J. Tremaine, L. J. Timmons, E. V. Loftus Jr. et al., “Age at onset of inflammatory bowel disease and the risk of surgery for non-neoplastic bowel disease,” Alimentary Pharmacology and Therapeutics, vol. 25, no. 12, pp. 1435–1441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. N. H. Yeo, J. Woo, K. O. Shin et al., “The effects of different exercise intensity on myokine and angiogenesis factors,” The Journal of Sports Medicine and Physical Fitness, vol. 52, no. 4, p. 448, 2012. View at Google Scholar
  139. S. Elsenbruch, J. Langhorst, K. Popkirowa et al., “Effects of mind-body therapy on quality of life and neuroendocrine and cellular immune functions in patients with ulcerative colitis,” Psychotherapy and Psychosomatics, vol. 74, no. 5, pp. 277–287, 2005. View at Publisher · View at Google Scholar · View at Scopus