Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 434257, 18 pages
http://dx.doi.org/10.1155/2014/434257
Research Article

Molecular Characterization and Screening for Sheath Blight Resistance Using Malaysian Isolates of Rhizoctonia solani

1School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia
2School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia

Received 26 February 2014; Revised 25 May 2014; Accepted 14 July 2014; Published 28 August 2014

Academic Editor: Gabriele Gentile

Copyright © 2014 Kalaivani Nadarajah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Sneh, L. Burpee, and A. Ogoshi, Identification of Rhizoctonia Species, APS Press, St. Paul, Minn, USA, 1991.
  2. M. Sharon, S. Kuninaga, M. Hyakumachi, S. Naito, and B. Sneh, “Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping,” Mycoscience, vol. 49, no. 2, pp. 93–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. E. Carling, “Grouping in Rhizoctonia solani by the anastomosis reaction,” in Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology, and Disease Control, B. Sneh, S. Jabaji-Hare, S. Neate, and G. Dijst, Eds., pp. 35–47, Kluwer, New York, NY, USA, 1996. View at Google Scholar
  4. A. Zheng, R. Lin, D. Zhang et al., “The evolution and pathogenic mechanisms of the rice sheath blight pathogen,” Nature Communications, vol. 4, article 1424, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. T. A. Rinehart, W. E. Copes, T. Toda, and M. A. Cubeta, “Genetic characterization of binucleate Rhizoctonia species causing web blight on Azalea in Mississippi and Alabama,” Plant Disease, vol. 91, no. 5, pp. 616–623, 2007. View at Google Scholar
  6. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  7. M. C. Rush and F. N. Lee, “Sheath blight,” in Compendium of Rice Diseases, R. K. Webster and P. S. Gunnell, Eds., pp. 22–23, The American Phytopathology Society, St. Paul, Minn, USA, 1992. View at Google Scholar
  8. D. V. Rani, N. P. Reddy, and U. G. Devi, “Management of maize banded leaf and sheath blight with fungicides and biocontrol agents,” Annals of Biological Research, vol. 4, no. 7, pp. 179–184, 2013. View at Google Scholar
  9. J. R. Parmeter, R. T. Sherwood, and W. D. Platt, “Anastomosis grouping among isolates of Thanatephorus cucumeris,” Phytopathology, vol. 59, pp. 1270–1278, 1969. View at Google Scholar
  10. P. C. Ceresini, H. D. Shew, T. Y. James, R. J. Vilgalys, and M. A. Cubeta, “Phylogeography of the Solanaceae-infecting Basidiomycota fungus Rhizoctonia solani AG-3 based on sequence analysis of two nuclear DNA loci,” BMC Evolutionary Biology, vol. 7, pp. 163–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Harikrishnan and X. B. Yang, “Recovery of anastomosis groups of Rhizoctonia solani from different latitudinal positions and influence of temperatures on their growth and survival,” Plant Disease, vol. 88, no. 8, pp. 817–823, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. B. Ciampi, M. C. Meyer, M. J. N. Costa, M. Zala, B. A. McDonald, and P. C. Ceresini, “Genetic structure of populations of Rhizoctonia solani anastomosis group-1 IA from soybean in Brazil,” Phytopathology, vol. 98, no. 8, pp. 932–941, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. V. González García, M. A. Portal Onco, and V. Rubio Susan, “Review. Biology and systematics of the form genus Rhizoctonia,” Spanish Journal of Agricultural Research, vol. 4, no. 1, pp. 55–79, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Grosch, J. H. M. Schneider, A. Peth et al., “Development of a specific PCR assay for the detection of Rhizoctonia solani AG 1-IB using SCAR primers,” Journal of Applied Microbiology, vol. 102, no. 3, pp. 806–819, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Guillemaut, V. Edel-Hermann, P. Camporota, C. Alabouvette, M. Richard-Molard, and C. Steinberg, “Typing of anastomosis groups of Rhizoctonia solani by restriction analysis of ribosomal DNA,” Canadian Journal of Microbiology, vol. 49, no. 9, pp. 556–568, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Tamura, M. Nei, and S. Kumar, “Prospects for inferring very large phylogenies by using the neighbor-joining method,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11030–11035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. W. Woodhall, A. K. Lees, S. G. Edwards, and P. Jenkinson, “Characterization of Rhizoctonia solani from potato in Great Britain,” Plant Pathology, vol. 56, no. 2, pp. 286–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Lehtonen, P. Ahvenniemi, P. S. Wilson, M. German-Kinnari, and J. P. T. Valkonen, “Biological diversity of Rhizoctonia solani (AG-3) in a northern potato-cultivation environment in Finland,” Plant Pathology, vol. 57, no. 1, pp. 141–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Liò and N. Goldman, “Review: models of molecular evolution and phylogeny,” Genome Research, vol. 8, no. 12, pp. 1233–1244, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kanematsu and S. Naito, “Genetic identification of Rhizoctonia solani AG 2-3 by analyzing restriction fragment length polymorphisms of nuclear ribosomal DNA internal transcribed spacers,” Annals of the Phytopathological Society of Japan, vol. 61, pp. 18–21, 1995. View at Google Scholar
  21. M. Matsumoto, N. Furuya, Y. Takanami, and N. Matsuyama, “A study of fatty acid analysis as a new taxonomic tool for differentiating Rhizoctonia spp.,” Journal of the Faculty of Agriculture, Kyushu University, vol. 40, no. 3-4, pp. 279–286, 1996. View at Google Scholar · View at Scopus
  22. J. Bernardes-de-Assis, M. Storari, M. Zala et al., “Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China,” Phytopathology, vol. 99, no. 9, pp. 1090–1099, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. E. Groth, “Effects of cultivar resistance and single fungicide application on rice sheath blight, yield, and quality,” Crop Protection, vol. 27, no. 7, pp. 1125–1130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Hashiba, “Estimating method of severity and yield loss by rice sheath blight disease,” Bulletin of the Hokuriku National Agricultural Experiment Station, vol. 26, pp. 115–164, 1984. View at Google Scholar
  25. F. N. Lee and M. C. Rush, “Rice sheath blight: a major rice disease,” Plant Disease, vol. 67, pp. 829–832, 1983. View at Publisher · View at Google Scholar
  26. D. Park, R. J. Sayler, Y. Hong, M. Nam, and Y. Yang, “A method for inoculation and evaluation of rice sheath blight disease,” Plant Disease, vol. 92, no. 1, pp. 25–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. G. C. Eizenga, B. Prasad, A. K. Jackson, and M. H. Jia, “Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/O. nivara advanced backcross populations,” Molecular Breeding, vol. 31, no. 4, pp. 889–907, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Lakshmanan, “Resistance to sheath blight (ShB) and brown spot (BS) in lines derived from Oryza officinalis,” International Rice Research Newsletter, vol. 16, article 8, 1991. View at Google Scholar
  29. B. Prasad and G. C. Eizenga, “Rice sheath blight disease resistance identified in Oryza spp. accessions,” Plant Disease, vol. 92, no. 11, pp. 1503–1509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. B. Pascual, T. Toda, A. D. Raymondo, and M. Hyakumachi, “Characterization by conventional techniques and PCR of Rhizoctonia solani isolates causing banded leaf sheath blight in maize,” Plant Pathology, vol. 49, no. 1, pp. 108–118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Pannecoucque, S. Van Beneden, and M. Höfte, “Characterization and pathogenicity of Rhizoctonia isolates associated with cauliflower in Belgium,” Plant Pathology, vol. 57, no. 4, pp. 737–746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. E. Johansson, M. U. Heldtander, and B. Pettersson, “Characterization of mycoplasmas by PCR and sequence analysis with universal 16S rDNA primers,” Methods in Molecular Biology, vol. 104, pp. 145–165, 1998. View at Google Scholar · View at Scopus
  33. T. H. Al-Samarrai and J. Schmid, “A simple method for extraction of fungal genomic DNA,” Letters in Applied Microbiology, vol. 30, no. 1, pp. 53–56, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. T. D. Bruns, T. J. White, and J. W. Taylor, “Fungal molecular systematics,” Annual Review of Ecology and Systematics, vol. 22, no. 1, pp. 525–564, 1991. View at Publisher · View at Google Scholar · View at Scopus
  35. D. T. Jones, W. R. Taylor, and J. M. Thornton, “The rapid generation of mutation data matrices from protein sequences,” Computer Applications in the Biosciences, vol. 8, no. 3, pp. 275–282, 1992. View at Google Scholar · View at Scopus
  36. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, pp. 783–791, 1985. View at Google Scholar
  38. K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Molecular Biology and Evolution, vol. 10, no. 3, pp. 512–526, 1993. View at Google Scholar · View at Scopus
  39. L. Willocquet, L. Fernandez, and S. Savary, “Effect of various crop establishment methods practised by Asian farmers on epidemics of rice sheath blight caused by Rhizoctonia solani,” Plant Pathology, vol. 49, no. 3, pp. 346–354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Ogoshi, “Anastomosis and intraspecific groups of Rhizoctonia solani and binucleate Rhizoctonia,” Fitopatologia Brasileira, vol. 10, pp. 371–390, 1985. View at Google Scholar
  41. A. Ogoshi, “Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn,” Annual Review of Phytopathology, vol. 25, pp. 125–143, 1987. View at Google Scholar
  42. D. E. Carling and R. H. Leiner, “Isolation and characterization of Rhizoctonia solani and binucleate R. solani-like fungi from aerial stems and subterranean organs of potato plants,” Phytopathology, vol. 76, pp. 725–729, 1986. View at Google Scholar
  43. H. Pung, S. Cross, K. O. Keller, and A. McKay, “Investigations on Rhizoctonia solani in cropping soils and vegetable crops. Project HVG05090,” Final Report, 2007. View at Google Scholar
  44. K. H. Kim and M. C. Rush, “Inheritance of infection cushion formation by Rhizoctonia solani Kühn on rice leaf sheath,” The Korean Journal of Breeding Science, vol. 18, pp. 167–173, 1986. View at Google Scholar
  45. B. J. Stodart, P. R. Harvey, S. M. Neate, D. L. Melanson, and E. S. Scott, “Genetic variation and pathogenicity of anastomosis group 2 isolates of Rhizoctonia solani in Australia,” Mycological Research, vol. 111, no. 8, pp. 891–900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Fang, P. M. Finnegan, and M. J. Barbetti, “Wide variation in virulence and genetic diversity of Binucleate Rhizoctonia isolates associated with root rot of strawberry in Western Australia,” PLoS ONE, vol. 8, no. 2, Article ID e55877, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Nei and S. Kumar, Molecular Evolution and Phylogenetics, Oxford University Press, New York, NY, USA, 2000.
  48. C. C. Linde, M. Zala, R. S. D. Paulraj, B. A. McDonald, and S. S. Gnanamanickam, “Population structure of the rice sheath blight pathogen Rhizoctonia solani AG-1 IA from India,” European Journal of Plant Pathology, vol. 112, no. 2, pp. 113–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. E. E. Butler, “Rhizoctonia,” in Biology of Sclerotial-Forming Fungi, S. D. Lyda and C. M. Kenerley, Eds., pp. 87–112, The Texas Agricultural Experiment Station, The Texas A & M University System, College Station, Tex, USA, 1993. View at Google Scholar
  50. W. C. Morrison, Ed., Louisiana Soybean Handbook, Louisiana State University Agricultural Center, Louisiana Cooperative Extension Service, 1996.
  51. K. Kalpana, S. Maruthasalam, T. Rajesh et al., “Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins,” Plant Science, vol. 170, no. 2, pp. 203–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. D. E. Groth, “Azoxystrobin rate and timing effects on rice sheath blight incidence and severity and rice grain and milling yields,” Plant Disease, vol. 89, no. 11, pp. 1171–1174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Jia, F. Correa-Victoria, A. McClung et al., “Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method,” Plant Disease, vol. 91, no. 5, pp. 485–489, 2007. View at Publisher · View at Google Scholar · View at Scopus