Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 438065, 9 pages
http://dx.doi.org/10.1155/2014/438065
Research Article

Nanofibrous Chitosan-Polyethylene Oxide Engineered Scaffolds: A Comparative Study between Simulated Structural Characteristics and Cells Viability

1Department of Materials Science, Tampere University of Technology, P.O. Box 589, 33101 Tampere, Finland
2Department of Textile Engineering, Islamic Azad University South Tehran Branch, P.O. Box 11365-4435, Tehran, Iran
3Department of Pharmaceutical Chemistry, School of Pharmacy, Isfahan University of Medical Sciences, P.O. Box 81745-359, Isfahan, Iran
4VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland

Received 25 December 2013; Revised 7 April 2014; Accepted 8 May 2014; Published 4 June 2014

Academic Editor: Kibret Mequanint

Copyright © 2014 Mohammad Kazemi Pilehrood et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Elsdale and J. Bard, “Collagen substrata for studies on cell behavior,” Journal of Cell Biology, vol. 54, no. 3, pp. 626–637, 1972. View at Google Scholar · View at Scopus
  2. N. Bhattarai, Z. Li, D. Edmondson, and M. Zhang, “Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties,” Advanced Materials, vol. 18, no. 11, pp. 1463–1467, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. P. Barnes, S. A. Sell, E. D. Boland, D. G. Simpson, and G. L. Bowlin, “Nanofiber technology: designing the next generation of tissue engineering scaffolds,” Advanced Drug Delivery Reviews, vol. 59, no. 14, pp. 1413–1433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B.-M. Min, Y. You, J.-M. Kim, S. J. Lee, and W. H. Park, “Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts,” Carbohydrate Polymers, vol. 57, no. 3, pp. 285–292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Nishida, K. Yasumoto, T. Otori, and J. Desaki, “The network structure of corneal fibroblasts in the rat as revealed by scanning electron microscopy,” Investigative Ophthalmology and Visual Science, vol. 29, no. 12, pp. 1887–1890, 1988. View at Google Scholar · View at Scopus
  6. J. Jia, Y.-Y. Duan, J. Yu, and J.-W. Lu, “Preparation and immobilization of soluble eggshell membrane protein on the electrospun nanofibers to enhance cell adhesion and growth,” Journal of Biomedical Materials Research A, vol. 86, no. 2, pp. 364–373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, “Potential of nanofiber matrix as tissue-engineering scaffolds,” Tissue Engineering, vol. 11, no. 1-2, pp. 101–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, “A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering,” Biomaterials, vol. 24, no. 12, pp. 2077–2082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhang, H. Ouyang, T. L. Chwee, S. Ramakrishna, and Z.-M. Huang, “Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds,” Journal of Biomedical Materials Research B: Applied Biomaterials, vol. 72, no. 1, pp. 156–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Huang, K. Nagapudi, P. R. Apkarian, and E. L. Chaikof, “Engineered collagen—PEO nanofibers and fabrics,” Journal of Biomaterials Science: Polymer Edition, vol. 12, no. 9, pp. 979–993, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, “Electrospun nanofiber scaffolds: engineering soft tissues,” Biomedical Materials, vol. 3, no. 3, Article ID 034002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. H. Kim, “Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold,” Biomedical Materials, vol. 3, no. 2, Article ID 025010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Dilamian, M. Montazer, and J. Masoumi, “Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride,” Carbohydrate Polymers, vol. 94, no. 1, pp. 364–371, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Charernsriwilaiwat, P. Opanasopit, T. Rojanarata, and T. Ngawhirunpat, “Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing,” International Journal of Pharmaceutics, vol. 427, no. 2, pp. 379–384, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Taepaiboon, U. Rungsardthong, and P. Supaphol, “Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, no. 2, pp. 387–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Taepaiboon, U. Rungsardthong, and P. Supaphol, “Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs,” Nanotechnology, vol. 17, no. 9, pp. 2317–2329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Danielsson, S. Ruault, M. Simonet, P. Neuenschwander, and P. Frey, “Polyesterurethane foam scaffold for smooth muscle cell tissue engineering,” Biomaterials, vol. 27, no. 8, pp. 1410–1415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. I. V. Yannas, E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy, “Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 3, pp. 933–937, 1989. View at Google Scholar · View at Scopus
  19. D. J. Griffon, M. R. Sedighi, D. V. Schaeffer, J. A. Eurell, and A. L. Johnson, “Chitosan scaffolds: interconnective pore size and cartilage engineering,” Acta Biomaterialia, vol. 2, no. 3, pp. 313–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. Phipps, W. C. Clem, J. M. Grunda, G. A. Clines, and S. L. Bellis, “Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration,” Biomaterials, vol. 33, no. 2, pp. 524–534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Soliman, S. Sant, J. W. Nichol, M. Khabiry, E. Traversa, and A. Khademhosseini, “Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density,” Journal of Biomedical Materials Research A, vol. 96, no. 3, pp. 566–574, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. K. Ekaputra, G. D. Prestwich, S. M. Cool, and D. W. Hutmacher, “Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs,” Biomacromolecules, vol. 9, no. 8, pp. 2097–2103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. L. Nerurkar, S. Sen, B. M. Baker, D. M. Elliott, and R. L. Mauck, “Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds,” Acta Biomaterialia, vol. 7, no. 2, pp. 485–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Moroni, R. Schotel, D. Hamann, J. R. de Wijn, and C. A. van Blitterswijk, “3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation,” Advanced Functional Materials, vol. 18, no. 1, pp. 53–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. T. Dubas, P. Kittitheeranun, R. Rangkupan, N. Sanchavanakit, and P. Potiyaraj, “Coating of polyelectrolyte multilayer thin films on nanofibrous scaffolds to improve cell adhesion,” Journal of Applied Polymer Science, vol. 114, no. 3, pp. 1574–1579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. F. Canbolat, C. Tang, S. H. Bernacki, B. Pourdeyhimi, and S. Khan, “Mammalian cell viability in electrospun composite nanofiber structures,” Macromolecular Bioscience, vol. 11, no. 10, pp. 1346–1356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Nam, Y. Huang, S. Agarwal, and J. Lannutti, “Improved cellular infiltration in electrospun fiber via engineered porosity,” Tissue Engineering, vol. 13, no. 9, pp. 2249–2257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. F. Leong, M. Z. Rasheed, T. C. Lim, and K. S. Chian, “In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique,” Journal of Biomedical Materials Research A, vol. 91, no. 1, pp. 231–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. B. Lee, S. I. Jeong, M. S. Bae et al., “Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration,” Tissue Engineering A, vol. 17, no. 21-22, pp. 2695–2702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. B. M. Baker, A. O. Gee, R. B. Metter et al., “The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers,” Biomaterials, vol. 29, no. 15, pp. 2348–2358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. K. Pilehrood, P. Heikkilä, and A. Harlin, “Simulation of structural characteristics and depth filtration elements in interconnected nanofibrous membrane based on adaptive image analysis,” World Journal of Nanoscience and Engineering, vol. 3, no. 1, pp. 6–16, 2013. View at Publisher · View at Google Scholar
  33. R. A. A. Muzzarelli, Chitin, Pergamon Press, Oxford, UK, 1977.
  34. R. A. A. Muzzarelli, C. Jeuniax, and G. W. Gooday, Eds., Chitin in Nature & Technology, Plenum Press, New York, NY, USA, 1986.
  35. Z. G. Chen, P. W. Wang, B. Wei, X. M. Mo, and F. Z. Cui, “Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell,” Acta Biomaterialia, vol. 6, no. 2, pp. 372–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Huang, R. Chen, Q. Ke, Y. Morsi, K. Zhang, and X. Mo, “Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts,” Colloids and Surfaces B: Biointerfaces, vol. 82, no. 2, pp. 307–315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. X.-H. Chu, X.-L. Shi, Z.-Q. Feng, Z.-Z. Gu, and Y.-T. Ding, “Chitosan nanofiber scaffold enhances hepatocyte adhesion and function,” Biotechnology Letters, vol. 31, no. 3, pp. 347–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-P. Chen, S.-H. Chen, and G.-J. Lai, “Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture,” Nanoscale Research Letters, vol. 7, pp. 1–11, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Mottaghitalab, M. Farokhi, V. Mottaghitalab, M. Ziabari, A. Divsalar, and M. A. Shokrgozar, “Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor,” Carbohydrate Polymers, vol. 86, no. 2, pp. 526–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. B. K. Gu, S. J. Park, M. S. Kim, C. M. Kang, J.-I. Kim, and C.-H. Kim, “Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials,” Carbohydrate Polymers, vol. 97, no. 1, pp. 65–73, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Jayakumar, M. Prabaharan, P. T. S. Kumar, S. V. Nair, and H. Tamura, “Biomaterials based on chitin and chitosan in wound dressing applications,” Biotechnology Advances, vol. 29, no. 3, pp. 322–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Paul and C. P. Sharma, “Chitosan and alginate wound dressings: a short review,” Trends Biomaterials Artificial Organs, vol. 18, pp. 18–23, 2004. View at Google Scholar
  43. C. Kriegel, K. M. Kit, D. J. McClements, and J. Weiss, “Electrospinning of chitosan-poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions,” Polymer, vol. 50, no. 1, pp. 189–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Duan, C. Dong, X. Yuan, and K. Yao, “Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide),” Journal of Biomaterials Science: Polymer Edition, vol. 15, no. 6, pp. 797–811, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. Y.-T. Jia, J. Gong, X.-H. Gu, H.-Y. Kim, J. Dong, and X.-Y. Shen, “Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method,” Carbohydrate Polymers, vol. 67, no. 3, pp. 403–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. L. van der Schueren, I. Steyaert, B. de Schoenmaker, and K. de Clerck, “Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system,” Carbohydrate Polymers, vol. 88, no. 4, pp. 1221–1226, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. K. T. Shalumon, K. H. Anulekha, C. M. Girish, R. Prasanth, S. V. Nair, and R. Jayakumar, “Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture,” Carbohydrate Polymers, vol. 80, no. 2, pp. 413–419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Subramanian, D. Vu, G. F. Larsen, and H.-Y. Lin, “Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering,” Journal of Biomaterials Science: Polymer Edition, vol. 16, no. 7, pp. 861–873, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. H. Tehrani, A. Zadhoush, S. Karbasi, and H. Sadeghi-Aliabadi, “Scaffold percolative efficiency: in vitro evaluation of the structural criterion for electrospun mats,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 11, pp. 2989–2998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Pakravan, M.-C. Heuzey, and A. Ajji, “A fundamental study of chitosan/PEO electrospinning,” Polymer, vol. 52, no. 21, pp. 4813–4824, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Sadeghi-Aliabadi, M. Aliasgharluo, A. Fattahi, M. Mirian, and M. Ghannadian, “In vitro cytotoxic evaluation of some synthesized COX-2 inhibitor derivatives against a panel of human cancer cell lines,” Research in Pharmaceutical Sciences, vol. 8, no. 4, pp. 299–304, 2013. View at Google Scholar · View at Scopus
  52. A. Balguid, A. Mol, M. H. van Marion, R. A. Bank, C. V. C. Bouten, and F. P. T. Baaijens, “Tailoring fiber diameter in electrospun poly(ε-Caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering,” Tissue Engineering A, vol. 15, no. 2, pp. 437–444, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Sell, C. Barnes, D. Simpson, and G. Bowlin, “Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen,” Journal of Biomedical Materials Research A, vol. 85, no. 1, pp. 115–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration,” Biomacromolecules, vol. 7, no. 10, pp. 2796–2805, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Moroni, J. R. de Wijn, and C. A. van Blitterswijk, “3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties,” Biomaterials, vol. 27, no. 7, pp. 974–985, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. A. S. Badami, M. R. Kreke, M. S. Thompson, J. S. Riffle, and A. S. Goldstein, “Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates,” Biomaterials, vol. 27, no. 4, pp. 596–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Sisson, C. Zhang, M. C. Farach-Carson, D. B. Chase, and J. F. Rabolt, “Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin,” Journal of Biomedical Materials Research A, vol. 94, no. 4, pp. 1312–1320, 2010. View at Publisher · View at Google Scholar · View at Scopus