Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 438459, 8 pages
http://dx.doi.org/10.1155/2014/438459
Research Article

Angiotensin I Converting Enzyme Inhibitory Peptides Obtained after In Vitro Hydrolysis of Pea (Pisum sativum var. Bajka) Globulins

Department of Biochemistry and Food Chemistry, University of Life Sciences, Ulica Skromna 8, 20-704 Lublin, Poland

Received 13 February 2014; Revised 26 June 2014; Accepted 22 July 2014; Published 28 August 2014

Academic Editor: Blanca Hernández-Ledesma

Copyright © 2014 Anna Jakubczyk and Barbara Baraniak. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Świeca, U. Gawlik-Dziki, and A. Jakubczyk, “Impact of seeding cultivation density on the growth and some nutraceutical properties of ready-to-eat lentil (Lens culinaris) sprouts,” Acta Scientiarum Polonarum-Hortorum Cultus, vol. 12, no. 4, pp. 19–29, 2013. View at Google Scholar
  2. A. Valdez-Ortiz, C. I. Fuentes-Gutiérrez, L. J. Germán-Báez, R. Gutiérrez-Dorado, and S. Medina-Godoy, “Protein hydrolysates obtained from Azufrado (sulphur yellow) beans (Phaseolus vulgaris): nutritional, ACE-inhibitory and antioxidative characterization,” LWT—Food Science and Technology, vol. 46, no. 1, pp. 91–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Świeca, U. Gawlik-Dziki, D. Kowalczyk, and U. Złotek, “Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts,” Scientia Horticulturae, vol. 140, pp. 87–95, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Vermeirssen, J. van Camp, and W. Verstraete, “Bioavailability of angiotensin I converting enzyme inhibitory peptides,” British Journal of Nutrition, vol. 92, no. 3, pp. 357–366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Zaman, S. Oparil, and D. A. Calhoun, “Drugs targeting the renin-angiotensin-aldosterone system,” Nature Reviews Drug Discovery, vol. 1, no. 8, pp. 621–636, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. G. V. Nikiforovich and G. R. Marshall, “3D model for TM region of the AT-1 receptor in complex with angiotensin II independently validated by site-directed mutagenesis data,” Biochemical and Biophysical Research Communications, vol. 286, no. 5, pp. 1204–1211, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Furukawa, T. Gohda, M. Tanimoto, and Y. Tomino, “Pathogenesis and novel treatment from the mouse model of type 2 diabetic nephropathy,” The Scientific World Journal, vol. 2013, Article ID 928197, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Robertson, “Angiotensin antagonists,” Journal of Receptions and Signal Transduction Research, vol. 20, no. 4, pp. 211–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. S. R. Tipnis, N. M. Hooper, R. Hyde, E. Karran, G. Christie, and A. J. Turner, “A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase,” Journal of Biological Chemistry, vol. 275, no. 43, pp. 33238–33243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. V. J. Dzau, “Mechanism of protective effects of ACE inhibition on coronary artery disease,” European Heart Journal, vol. 19, pp. J2–J6, 1998. View at Google Scholar · View at Scopus
  11. B. F. Gibbs, A. Zougman, R. Masse, and C. Mulligan, “Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food,” Food Research International, vol. 37, no. 2, pp. 123–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Barbana and J. I. Boye, “Angiotensin I-converting enzyme inhibitory activity of chickpea and pea protein hydrolysates,” Food Research International, vol. 43, no. 6, pp. 1642–1649, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. G. Akillioǧlu and S. Karakaya, “Effects of heat treatment and in vitro digestion on the angiotensin converting enzyme inhibitory activity of some legume species,” European Food Research and Technology, vol. 229, no. 6, pp. 915–921, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. R. Segura-Campos, L. A. Chel-Guerrero, and D. A. Betancur-Ancona, “Purification of angiotensin I-converting enzyme inhibitory peptides from a cowpea (Vigna unguiculata) enzymatic hydrolysate,” Process Biochemistry, vol. 46, no. 4, pp. 864–872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Jakubczyk, M. Karaś, B. Baraniak et al., “The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins,” Food Chemistry, vol. 141, no. 4, pp. 3774–3780, 2013. View at Publisher · View at Google Scholar
  16. D. Gao, T. Chang, H. Li, and Y. Cao, “Angiotensin I-converting enzyme inhibitor derived from cottonseed protein hydrolysate,” African Journal of Biotechnology, vol. 9, no. 53, pp. 8977–8983, 2010. View at Google Scholar · View at Scopus
  17. K. Suetsuna, “Isolation and characterization of angiotensin I-converting enzyme inhibitor dipeptides derived from Allium sativum L (garlic),” The Journal of Nutritional Biochemistry, vol. 9, no. 7, pp. 415–419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hayakari, Y. Kondo, and H. Izumi, “A rapid and simple spectrophotometric assay of angiotensin-converting enzyme,” Analytical Biochemistry, vol. 84, no. 2, pp. 361–369, 1978. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Gupta and S. Dhillon, “Characterization of seed storage proteins of Lentil (Lens culinaris M.),” Annals of Biology, vol. 9, no. 1, pp. 71–78, 1993. View at Google Scholar
  20. U. Gawlik-Dziki, “Changes in the antioxidant activities of vegetables as a consequence of interactions between active compounds,” Journal of Functional Foods, vol. 4, no. 4, pp. 872–882, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Adler-Nissen, “Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid,” Journal of Agricultural and Food Chemistry, vol. 27, no. 6, pp. 1256–1262, 1979. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Boogers, W. Plugge, Y. Q. Stokkermans, and A. L. L. Duchateau, “Ultra-performance liquid chromatographic analysis of amino acids in protein hydrolysates using an automated pre-column derivatisation method,” Journal of Chromatography A, vol. 1189, no. 1-2, pp. 406–409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. W. M. Y. Lo, E. R. Farnworth, and E. C. Y. Li-Chan, “Angiotensin I-converting enzyme inhibitory activity of soy protein digest in a dynamic model system simulating the upper gastrointestinal tract,” Journal of Food Science, vol. 71, no. 3, pp. S231–S237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Korhonen and A. Pihlanto, “Bioactive peptides: production and functionality,” International Dairy Journal, vol. 16, no. 9, pp. 945–960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Durak, B. Baraniak, A. Jakubczyk, and M. Świeca, “Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds,” Food Chemistry, vol. 141, no. 3, pp. 2177–2183, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Wu and X. Ding, “Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides,” Food Research International, vol. 35, no. 4, pp. 367–375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. S. Rohrbach, E. B. Williams Jr., and R. A. Rolstad, “Purification and substrate specificity of bovine angiotensin-converting enzyme,” Journal of Biological Chemistry, vol. 256, no. 1, pp. 225–230, 1981. View at Google Scholar · View at Scopus
  28. C. Guang and R. D. Phillips, “Purification, activity and sequence of angiotensin converting enzyme inhibitory peptide from aicalase hydroiysate of peanut flour,” Journal of Agricultural and Food Chemistry, vol. 57, no. 21, pp. 10102–10106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. J. Rho, J.-S. Lee, Y. I. Chung, Y. Kim, and H. G. Lee, “Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract,” Process Biochemistry, vol. 44, no. 4, pp. 490–493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. G.-H. Li, J.-Z. Wan, G.-W. Le, and Y. Shi, “Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein,” Journal of Peptide Science, vol. 12, no. 8, pp. 509–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Pedroche, M. M. Yust, J. Girón-Calle, M. Alaiz, F. Millán, and J. Vioque, “Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity,” Journal of the Science of Food and Agriculture, vol. 82, no. 9, pp. 960–965, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Okamoto, H. Hanagata, Y. Kawamura, and F. Yanagida, “Anti-hypertensive substances in fermented soybean, natto,” Plant Foods for Human Nutrition, vol. 47, no. 1, pp. 39–47, 1995. View at Publisher · View at Google Scholar · View at Scopus