Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 456323, 10 pages
http://dx.doi.org/10.1155/2014/456323
Research Article

MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

1Institute of Medical Sciences, Tzu Chi University, No. 701, Zhongyang Road, Section 3, Hualien 97004, Taiwan
2Laboratory for Cytogenetics, Center for Genetic Counseling, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
3Department of Computer Science & Information Engineering, Tamkang University, New Taipei City 25137, Taiwan
4Bioinformatics Core Laboratory, Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
5Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan

Received 11 April 2014; Revised 14 August 2014; Accepted 16 August 2014; Published 16 September 2014

Academic Editor: Tzong-Yi Lee

Copyright © 2014 Kuei-Fang Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Blyth and P. J. Sykes, “Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures?” Radiation Research, vol. 176, no. 2, pp. 139–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. N. K. Jacob, J. V. Cooley, T. N. Yee et al., “Identification of sensitive serum microrna biomarkers for radiation biodosimetry,” PLoS ONE, vol. 8, no. 2, Article ID e57603, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Lodish, A. Berk, and P. Matsudaira, “Cancer: the role of carcinogens and DNA repair in cancer,” Molecular Biology of the Cell, p. 963, 2004. View at Google Scholar
  4. E. H. Donnelly, J. B. Nemhauser, J. M. Smith et al., “Acute radiation syndrome: assessment and management,” Southern Medical Journal, vol. 103, no. 6, pp. 541–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Xiao and M. H. Whitnall, “Pharmacological countermeasures for the acute radiation syndrome,” Current Molecular Pharmacology, vol. 2, no. 1, pp. 122–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. I. Azzam and J. B. Little, “The radiation-induced bystander effect: evidence and significance,” Human & Experimental Toxicology, vol. 23, no. 2, pp. 61–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Mancuso, E. Pasquali, S. Leonardi et al., “Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12445–12450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Demaria, B. Ng, M. L. Devitt et al., “Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated,” International Journal of Radiation Oncology Biology Physics, vol. 58, no. 3, pp. 862–870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. H. Barcellos-Hoff, C. Adams, A. Balmain et al., “Systems biology perspectives on the carcinogenic potential of radiation,” Journal of Radiation Research, vol. 55, supplement 1, pp. i145–i154, 2014. View at Google Scholar
  10. W. F. Morgan and M. B. Sowa, “Effects of ionizing radiation in nonirradiated cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 40, pp. 14127–14128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Baskar, “Emerging role of radiation induced bystander effects: cell communications and carcinogenesis,” Genome Integrity, vol. 1, article 13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. U. Aypar, W. F. Morgan, and J. E. Baulch, “Radiation-induced genomic instability: are epigenetic mechanisms the missing link?” International Journal of Radiation Biology, vol. 87, no. 2, pp. 179–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. W. F. Morgan, “Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro,” Radiation Research, vol. 159, no. 5, pp. 567–580, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. W. F. Morgan, “Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects,” Radiation Research, vol. 159, no. 5, pp. 581–596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Nagar, L. E. Smith, and W. F. Morgan, “Variation in apoptosis profiles in radiation-induced genomically unstable cell lines,” Radiation Research, vol. 163, no. 3, pp. 324–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Li, “Chromatin modification and epigenetic reprogramming in mammalian development,” Nature Reviews Genetics, vol. 3, no. 9, pp. 662–673, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ma, X. Liu, B. Jiao, and Y. Yang, “Low-dose radiation-induced responses: focusing on epigenetic regulation,” International Journal of Radiation Biology, vol. 86, no. 7, pp. 517–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. N. K. Jacob, J. V. Cooley, T. N. Yee et al., “Identification of sensitive serum microRNA biomarkers for radiation biodosimetry,” PLoS ONE, vol. 8, no. 2, Article ID e57603, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Cui, J. Ma, Y. Wang, and S. Biswal, “Plasma miRNA as biomarkers for assessment of total-body radiation exposure dosimetry,” PLoS ONE, vol. 6, no. 8, Article ID e22988, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Templin, S. A. Amundson, D. J. Brenner, and L. B. Smilenov, “Whole mouse blood microRNA as biomarkers for exposure to γ-rays and 56Fe ions,” International Journal of Radiation Biology, vol. 87, no. 7, pp. 653–662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. International Organization for Standardization (ISO), “Radiation protection—performance criteria for service laboratories performing biological dosimetry by cytogenetics,” ISO 19238, ISO, Geneva, Switzerland, 2004. View at Google Scholar
  22. IAEA, “Cytogenetic analysis for radiation dose assessment: a manual,” Tech. Rep. 405, International Atomic Energy Agency, Vienna, Austria, 2001. View at Google Scholar
  23. H. Dweep, C. Sticht, P. Pandey, and N. Gretz, “MiRWalk-database: prediction of possible miRNA binding sites by “walking” the genes of three genomes,” Journal of Biomedical Informatics, vol. 44, no. 5, pp. 839–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human microRNA targets,” PLoS Biology, vol. 2, no. 11, article e363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Wang, “miRDB: a microRNA target prediction and functional annotation database with a wiki interface,” RNA, vol. 14, no. 6, pp. 1012–1017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Loher and I. Rigoutsos, “Interactive exploration of RNA22 microRNA target predictions,” Bioinformatics, vol. 28, no. 24, pp. 3322–3323, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. B. Hsu, C.-M. Chiu, S.-D. Hsu et al., “MiRTar: an integrated system for identifying miRNA-target interactions in human,” BMC Bioinformatics, vol. 12, article 300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. Cline, M. Smoot, E. Cerami et al., “Integration of biological networks and gene expression data using Cytoscape,” Nature Protocols, vol. 2, no. 10, pp. 2366–2382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software Environment for integrated models of biomolecular interaction networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. K. F. Lee, Y. C. Chen, P. W. C. Hsu et al., “Gene expression profiling of biological pathway alterations by radiation exposure,” BioMed Research International, vol. 2014, Article ID 834087, 9 pages, 2014. View at Publisher · View at Google Scholar
  33. X. Ji, R. Takahashi, Y. Hiura, G. Hirokawa, Y. Fukushima, and N. Iwai, “Plasma miR-208 as a biomarker of myocardial injury,” Clinical Chemistry, vol. 55, no. 11, pp. 1944–1949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Diener, X. S. Wang, C. Chen et al., “Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9687–9692, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Jones, X. Zhang, D. W. Parsons et al., “Core signaling pathways in human pancreatic cancers revealed by global genomic analyses,” Science, vol. 321, no. 5897, pp. 1801–1806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Lam, D. Dickens, E. B. Reid, S. H. Y. Loh, N. Moisoi, and L. M. Martins, “MAP4K3 modulates cell death via the post-transcriptional regulation of BH3-only proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 11978–11983, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Wang, I.-K. Kwon, N. Singh et al., “Type 2 cGMP-dependent protein kinase regulates homeostasis by blocking c-Jun N-terminal kinase in the colon epithelium,” Cell Death and Differentiation, vol. 21, no. 3, pp. 427–437, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. C.-Y. Yang, J.-P. Li, L.-L. Chiu et al., “Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation,” The Journal of Immunology, vol. 192, no. 4, pp. 1547–1557, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. D. H. Kim, X. Zhao, C. H. Tu, P. Casaccia-Bonnefil, and M. V. Chao, “Prevention of apoptotic but not necrotic cell death following neuronal injury by neurotrophins signaling through the tyrosine kinase receptor,” Journal of Neurosurgery, vol. 100, no. 1, pp. 79–87, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. S. Jadhav, N. Sharma, C. J. Meeks et al., “Effects of combined radiation and burn injury on the rennin-angiotensin system,” Wound Repair and Regeneration, vol. 21, no. 1, pp. 131–140, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Tuttle, T. Stamato, M. L. Perez, and J. Biaglow, “Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation,” Radiation Research, vol. 153, no. 6, pp. 781–787, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. A. L. Gartel and A. L. Tyner, “The role of the cyclin-dependent kinase inhibitor p21 in apoptosis,” Molecular Cancer Therapeutics, vol. 1, no. 8, pp. 639–649, 2002. View at Google Scholar · View at Scopus
  43. W. Strzalka and A. Ziemienowicz, “Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation,” Annals of Botany, vol. 107, no. 7, pp. 1127–1140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Oster, E. Murani, C. C. Metges, S. Ponsuksili, and K. Wimmers, “A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model,” PLoS ONE, vol. 6, no. 7, Article ID e21691, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Clevers and M. van de Wetering, “TCF/LEF factors earn their wings,” Trends in Genetics, vol. 13, no. 12, pp. 485–489, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Q. Wu, M. Seay, V. P. Schulz et al., “Tcf7 is an important regulator of the switch of self-renewal and differentiation in a multipotential hematopoietic cell line,” PLoS Genetics, vol. 8, no. 3, Article ID e1002565, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Harashima, T. Akimoto, T. Nonaka, K. Tsuzuki, N. Mitsuhashi, and T. Nakano, “Heat shock protein 90 (Hsp90) chaperone complex inhibitor, Radicicol, potentiated radiation-induced cell killing in a hormone-sensitive prostate cancer cell line through degradation of the androgen receptor,” International Journal of Radiation Biology, vol. 81, no. 1, pp. 63–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Li, Y.-T. Chen, S. Josson et al., “MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells,” PLoS ONE, vol. 8, no. 8, Article ID e70987, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Neijenhuis, I. Bajrami, R. Miller, C. J. Lord, and A. Ashworth, “Identification of miRNA modulators to PARP inhibitor response,” DNA Repair, vol. 12, no. 6, pp. 394–402, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Trajkovski, J. Hausser, J. Soutschek et al., “MicroRNAs 103 and 107 regulate insulin sensitivity,” Nature, vol. 474, no. 7353, pp. 649–653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. P.-S. Chen, J.-L. Su, S.-T. Cha et al., “miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans,” The Journal of Clinical Investigation, vol. 121, no. 9, pp. 3442–3455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Cloonan, M. K. Brown, A. L. Steptoe et al., “The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition,” Genome Biology, vol. 9, no. 8, article R127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Hossain, M. T. Kuo, and G. F. Saunders, “Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA,” Molecular and Cellular Biology, vol. 26, no. 21, pp. 8191–8201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Hrdličková, J. Nehyba, W. Bargmann, and H. R. Bose Jr., “Multiple tumor suppressor microRNAs regulate telomerase and TCF7, an important transcriptional regulator of the Wnt pathway,” PLoS ONE, vol. 9, no. 2, Article ID e86990, 2014. View at Google Scholar
  55. A. Sastre-Perona and P. Santisteban, “Role of the Wnt pathway in thyroid cancer,” Frontiers in Endocrinology, vol. 3, article 31, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. S. D. Solomon, N. Anavekar, FRACP, and NHMRC Faculty and Disclosures, “A Brief Overview of Inhibition of the Renin-Angiotensin System: Emphasis on Blockade of the Angiotensin II Type-1 Receptor,” 2005.