Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 469298, 9 pages
http://dx.doi.org/10.1155/2014/469298
Research Article

Molecular Characterization of a Recombinant Manganese Superoxide Dismutase from Lactococcus lactis M4

1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
2Institute of Biosciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
3Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 18 April 2013; Revised 12 October 2013; Accepted 3 November 2013; Published 27 January 2014

Academic Editor: Co-Shine Wang

Copyright © 2014 Boon Hooi Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Miyoshi, T. Rochat, J. J. Gratadoux et al., “Oxidative stress in Lactococcus lactis,” Genetics and Molecular Research, vol. 2, no. 4, pp. 348–359, 2003. View at Google Scholar · View at Scopus
  2. K. Makarova, A. Slesarev, Y. Wolf et al., “Comparative genomics of the lactic acid bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 42, pp. 15611–15616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. I. P. Kaur, K. Chopra, and A. Saini, “Probiotics: potential pharmaceutical applications,” European Journal of Pharmaceutical Sciences, vol. 15, no. 1, pp. 1–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. N. R. Krieg and P. S. Hoffman, “Microaerophily and oxygen toxicity,” Annual Review of Microbiology, vol. 40, pp. 107–130, 1986. View at Google Scholar · View at Scopus
  5. I. Fridovich, “Superoxide dismutases,” Advances in Enzymology and Related Areas of Molecular Biology, vol. 58, pp. 61–97, 1986. View at Google Scholar · View at Scopus
  6. Y. Takeda and H. Avila, “Structure and gene expression of the E. coli Mn-superoxide dismutase gene,” Nucleic Acids Research, vol. 14, no. 11, pp. 4577–4589, 1986. View at Publisher · View at Google Scholar · View at Scopus
  7. W. C. Stallings, K. A. Pattridge, R. K. Strong, and M. L. Ludwig, “Manganese and iron superoxide dismutases are structural homologs,” Journal of Biological Chemistry, vol. 259, no. 17, pp. 10695–10699, 1984. View at Google Scholar · View at Scopus
  8. W. Zitzelsberger, F. Götz, and K. H. Schleifer, “Distribution of superoxide dismutases, oxidases, and NADH peroxidase in various streptococci,” FEMS Microbiology Letters, vol. 21, no. 2, pp. 243–246, 1984. View at Publisher · View at Google Scholar · View at Scopus
  9. J. W. Sanders, K. J. Leenhouts, A. J. Haandrikman, G. Venema, and J. Kok, “Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene,” Journal of Bacteriology, vol. 177, no. 18, pp. 5254–5260, 1995. View at Google Scholar · View at Scopus
  10. G. Engelke, Z. Gutowski-Eckel, M. Hammelmann, and K. D. Entian, “Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein,” Applied and Environmental Microbiology, vol. 58, no. 11, pp. 3730–3743, 1992. View at Google Scholar · View at Scopus
  11. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  12. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Beauchamp and I. Fridovich, “Superoxide dismutase: improved assays and an assay applicable to acrylamide gels,” Analytical Biochemistry, vol. 44, no. 1, pp. 276–287, 1971. View at Google Scholar · View at Scopus
  14. C. N. Chen and S. M. Pan, “Assay of superoxide dismutase activity by combining electrophoresis and densitometry,” Botanical Bulletin of Academia Sinica, vol. 37, no. 2, pp. 107–111, 1996. View at Google Scholar · View at Scopus
  15. M. P. Babitha, H. S. Prakash, and H. Shekar, “Purification and partial characterization of manganese superoxide dismutase from downy mildew resistant pearl millet seedlings inoculated with Sclerospora graminicola,” Plant Science, vol. 163, no. 4, pp. 917–924, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Krieger, G. Koraimann, and G. Vriend, “Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field,” Proteins: Structure, Function and Genetics, vol. 47, no. 3, pp. 393–402, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Liao, M. Y. Liu, T. Chang et al., “Three-dimensional structure of manganese superoxide dismutase from Bacillus halodenitrificans, a component of the so-called “green protein”,” Journal of Structural Biology, vol. 139, no. 3, pp. 171–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Liu, H. Ewis, Y. J. Huang, C. D. Lu, P. Tai, and I. T. Weber, “Structure of Bacillus subtilis superoxide dismutase,” Acta Crystallographica F, vol. 63, pp. 1003–1007, 2007. View at Publisher · View at Google Scholar
  19. N. Guex and M. Peitsch, “Swiss-PdbViewer: a fast and easy-to-use PDB viewer for Macintosh and PC,” Protein Data Bank Quaterly Newsletter, vol. 77, p. 7, 1996. View at Google Scholar
  20. G. E. O. Borgstahl, H. E. Parge, M. J. Hickey, W. F. Beyer Jr., R. A. Hallewell, and J. A. Tainer, “The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles,” Cell, vol. 71, no. 1, pp. 107–118, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Sato and K. Nakazawa, “Purification and properties of superoxide dismutase from Thermus thermophilus HB8,” Journal of Biochemistry, vol. 83, no. 4, pp. 1165–1171, 1978. View at Google Scholar · View at Scopus
  22. S. Sato and J. I. Harris, “Superoxide dismutase from Thermus aquaticus. Isolation and characterization of manganese and apo enzymes,” European Journal of Biochemistry, vol. 73, no. 2, pp. 373–381, 1977. View at Google Scholar · View at Scopus
  23. B. B. Keele Jr., J. M. McCord, and I. Fridovich, “Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme,” Journal of Biological Chemistry, vol. 245, no. 22, pp. 6176–6181, 1970. View at Google Scholar · View at Scopus
  24. K. Asada, K. Yoshikawa, M. Takahashi, Y. Maeda, and K. Enmanji, “Superoxide dismutases from a blue-green alga, Plectonema boryanum,” Journal of Biological Chemistry, vol. 250, no. 8, pp. 2801–2807, 1975. View at Google Scholar · View at Scopus
  25. G. Rotilio, R. C. Bray, and E. M. Fielden, “A pulse radiolysis study of superoxide dismutase,” Biochimica et Biophysica Acta, vol. 268, no. 2, pp. 605–609, 1972. View at Google Scholar · View at Scopus
  26. J. W. Sanders, G. Venema, and J. Kok, “Environmental stress responses in Lactococcus lactis,” FEMS Microbiology Reviews, vol. 23, no. 4, pp. 483–501, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. D. C. Li, J. Gao, Y. L. Li, and J. Lu, “A thermostable manganese-containing superoxide dismutase from the thermophilic fungus Thermomyces lanuginosus,” Extremophiles, vol. 9, no. 1, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. C. F. Ken, C. C. Lee, K. J. Duan, and C. T. Lin, “Unusual stability of manganese superoxide dismutase from a new species, Tatumella ptyseos ct: its gene structure, expression, and enzyme properties,” Protein Expression and Purification, vol. 40, pp. 42–50, 2005. View at Publisher · View at Google Scholar
  29. H. M. Hassan, “Microbial Superoxide Dismutases,” Advances in Genetics, vol. 26, pp. 65–97, 1989. View at Publisher · View at Google Scholar · View at Scopus
  30. H. P. Misra and I. Fridovich, “Inhibition of superoxide dismutases by azide,” Archives of Biochemistry and Biophysics, vol. 189, no. 2, pp. 317–322, 1978. View at Google Scholar · View at Scopus
  31. R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check the stereochemical quality of protein structures,” Journal of Applied Crystallography, vol. 26, pp. 283–291, 1993. View at Publisher · View at Google Scholar
  32. R. Luthy, J. U. Bowie, and D. Eisenberg, “Assesment of protein models with three-dimensional profiles,” Nature, vol. 356, no. 6364, pp. 83–85, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Colovos and T. O. Yeates, “Verification of protein structures: patterns of nonbonded atomic interactions,” Protein Science, vol. 2, no. 9, pp. 1511–1519, 1993. View at Google Scholar · View at Scopus
  34. W. Beyer, J. Imlay, and I. Fridovich, “Superoxide Dismutases,” Progress in Nucleic Acid Research and Molecular Biology, vol. 40, pp. 221–253, 1991. View at Publisher · View at Google Scholar · View at Scopus