Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 470393, 14 pages
http://dx.doi.org/10.1155/2014/470393
Research Article

Pinocembrin Protects Human Brain Microvascular Endothelial Cells against Fibrillar Amyloid- β1−40 Injury by Suppressing the MAPK/NF- κ B Inflammatory Pathways

1Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
2Pharmacy Department, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China

Received 7 April 2014; Revised 2 June 2014; Accepted 15 June 2014; Published 23 July 2014

Academic Editor: Nikunj Patel

Copyright © 2014 Rui Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Cerebrovascular accumulation of amyloid-β (Aβ) peptides in Alzheimer’s disease (AD) may contribute to disease progression through Aβ-induced microvascular endothelial pathogenesis. Pinocembrin has been shown to have therapeutic effects in AD models. These effects correlate with preservation of microvascular function, but the effect on endothelial cells under Aβ-damaged conditions is unclear. The present study focuses on the in vitro protective effect of pinocembrin on fibrillar Aβ1−40 (fAβ1−40) injured human brain microvascular endothelial cells (hBMECs) and explores potential mechanisms. The results demonstrate that fAβ1−40-induced cytotoxicity in hBMECs can be rescued by pinocembrin treatment. Pinocembrin increases cell viability, reduces the release of LDH, and relieves nuclear condensation. The mechanisms of this reversal from Aβ may be associated with the inhibition of inflammatory response, involving inhibition of MAPK activation, downregulation of phosphor-IKK level, relief of IκBα degradation, blockage of NF-κB p65 nuclear translocation, and reduction of the release of proinflammatory cytokines. Pinocembrin does not show obvious effects on regulating the redox imbalance after exposure to fAβ1−40. Together, the suppression of MAPK and the NF-κB signaling pathways play a significant role in the anti-inflammation of pinocembrin in hBMECs subjected to fAβ1−40. This may serve as a therapeutic agent for BMEC protection in Alzheimer’s-related deficits.