Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 470482, 13 pages
http://dx.doi.org/10.1155/2014/470482
Research Article

The Putative HORMA Domain Protein Atg101 Dimerizes and Is Required for Starvation-Induced and Selective Autophagy in Drosophila

1Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest 1117, Hungary
2Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary

Received 17 January 2014; Accepted 11 March 2014; Published 8 May 2014

Academic Editor: Ioannis P. Nezis

Copyright © 2014 Krisztina Hegedűs et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Klionsky, J. M. Cregg, W. A. Dunn Jr. et al., “A unified nomenclature for yeast autophagy-related genes,” Developmental Cell, vol. 5, no. 4, pp. 539–545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Erdi, P. Nagy, A. Zvara et al., “Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila,” Autophagy, vol. 8, pp. 1124–1135, 2012. View at Google Scholar
  3. N. Mizushima, “The role of the Atg1/ULK1 complex in autophagy regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 132–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Zoncu, L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, and D. M. Sabatini, “mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase,” Science, vol. 334, no. 6056, pp. 678–683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Juhasz, “Interpretation of bafilomycin, pH neutralizing or protease inhibitor treatments in autophagic flux experiments: novel considerations,” Autophagy, vol. 8, pp. 1875–1876, 2012. View at Google Scholar
  6. N. Hosokawa, T. Hara, T. Kaizuka et al., “Nutrient-dependent mTORCl association with the ULK1-Atg13-FIP200 complex required for autophagy,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 1981–1991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Banreti, T. Lukacsovich, G. Csikos, M. Erdelyi, and M. Sass, “PP2A regulates autophagy in two alternative ways in Drosophila,” Autophagy, vol. 8, pp. 623–636, 2012. View at Google Scholar
  8. Y.-Y. Chang and T. P. Neufeld, “An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 2004–2014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Nagy, M. Kárpáti, A. Varga et al., “Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila,” Autophagy, vol. 10, pp. 453–467, 2014. View at Google Scholar
  10. R. C. Scott, G. Juhász, and T. P. Neufeld, “Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death,” Current Biology, vol. 17, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Ichimura, T. Kirisako, T. Takao et al., “A ubiquitin-like system mediates protein lipidation,” Nature, vol. 408, no. 6811, pp. 488–492, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Mizushima, A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi, “In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker,” Molecular Biology of the Cell, vol. 15, no. 3, pp. 1101–1111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Johansen and T. Lamark, “Selective autophagy mediated by autophagic adapter proteins,” Autophagy, vol. 7, no. 3, pp. 279–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Pankiv, T. H. Clausen, T. Lamark et al., “p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy,” Journal of Biological Chemistry, vol. 282, no. 33, pp. 24131–24145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. I. P. Nezis, A. Simonsen, A. P. Sagona et al., “Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain,” Journal of Cell Biology, vol. 180, no. 6, pp. 1065–1071, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Hosokawa, T. Sasaki, S.-I. Iemura, T. Natsume, T. Hara, and N. Mizushima, “Atg101, a novel mammalian autophagy protein interacting with Atg13,” Autophagy, vol. 5, no. 7, pp. 973–979, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C. A. Mercer, A. Kaliappan, and P. B. Dennis, “A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy,” Autophagy, vol. 5, no. 5, pp. 649–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Liang, P. Yang, E. Tian, J. Han, and H. Zhang, “The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy,” Autophagy, vol. 8, pp. 1426–1433, 2012. View at Google Scholar
  19. S. Takats, P. Nagy, Á. Varga et al., “Autophagosomal syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila,” The Journal of Cell Biology, vol. 201, pp. 531–539, 2013. View at Google Scholar
  20. P. Nagy, A. Varga, K. Pircs, K. Hegedus, and G. Juhasz, “Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in drosophila melanogaster,” PLOS Genetics, vol. 9, Article ID e1003664, 2013. View at Google Scholar
  21. G. Juhász, B. Érdi, M. Sass, and T. P. Neufeld, “Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila,” Genes and Development, vol. 21, no. 23, pp. 3061–3066, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Pircs, P. Nagy, A. Varga et al., “Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila,” PloS ONE, vol. 7, Article ID e44214, 2012. View at Google Scholar
  23. G. Juhasz and T. P. Neufeld, “Experimental control and characterization of autophagy in drosophila,” Methods in Molecular Biology, vol. 445, pp. 125–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Nagy, K. Hegedus, K. Pircs, A. Varga, and G. Juhasz, “Different effects of Atg2 and Atg18 mutations on Atg8a and Atg9 trafficking during starvation in Drosophila,” FEBS Letters, vol. 588, pp. 408–413, 2014. View at Google Scholar
  25. A. M. Altenhoff, A. Schneider, G. H. Gonnet, and C. Dessimoz, “OMA 2011: orthology inference among 1000 complete genomes,” Nucleic Acids Research, vol. 39, no. 1, pp. D289–D294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Roy, A. Kucukural, and Y. Zhang, “I-TASSER: a unified platform for automated protein structure and function prediction,” Nature Protocols, vol. 5, no. 4, pp. 725–738, 2010. View at Google Scholar · View at Scopus
  27. L. A. Kelley and M. J. E. Sternberg, “Protein structure prediction on the Web: a case study using the Phyre server,” Nature Protocols, vol. 4, no. 3, pp. 363–371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Holm and J. Park, “DaliLite workbench for protein structure comparison,” Bioinformatics, vol. 16, no. 6, pp. 566–567, 2000. View at Google Scholar · View at Scopus
  29. D. Lupyan, A. Leo-Macias, and A. R. Ortiz, “A new progressive-iterative algorithm for multiple structure alignment,” Bioinformatics, vol. 21, no. 15, pp. 3255–3263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Meszaros, Z. Dosztanyi, and I. Simon, “Disordered binding regions and linear motifs—bridging the gap between two models of molecular recognition,” PloS ONE, vol. 7, Article ID e46829, 2012. View at Google Scholar
  31. Z. Dosztányi, V. Csizmok, P. Tompa, and I. Simon, “IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content,” Bioinformatics, vol. 21, no. 16, pp. 3433–3434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF Chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner, “WebLogo: a sequence logo generator,” Genome Research, vol. 14, no. 6, pp. 1188–1190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Subramaniam, “The Biology Workbench—a seamless database and analysis environment for the biologist,” Proteins, vol. 32, pp. 1–2, 1998. View at Google Scholar
  35. R. C. Scott, O. Schuldiner, and T. P. Neufeld, “Role and regulation of starvation-induced autophagy in the Drosophila fat body,” Developmental Cell, vol. 7, no. 2, pp. 167–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Lu, P. Yang, X. Huang et al., “The WD40 repeat ptdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes,” Developmental Cell, vol. 21, no. 2, pp. 343–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. K. G. Velikkakath, T. Nishimura, E. Oita, N. Ishihara, and N. Mizushima, “Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets,” Molecular Biology of the Cell, vol. 23, no. 5, pp. 896–909, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. E. A. Alemu, T. Lamark, K. M. Torgersen et al., “ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs,” The Journal of Biological Chemistry, vol. 287, pp. 39275–39290, 2012. View at Google Scholar
  39. V. Rogov, V. Dotsch, T. Johansen, and V. Kirkin, “Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy,” Molecular Cell, vol. 53, pp. 167–178, 2014. View at Google Scholar
  40. M. Komatsu, S. Waguri, M. Koike et al., “Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice,” Cell, vol. 131, no. 6, pp. 1149–1163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. J. Bartlett, P. Isakson, J. Lewerenz et al., “p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects,” Autophagy, vol. 7, no. 6, pp. 572–583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. D. J. Klionsky, F. C. Abdalla, H. Abeliovich et al., “Guidelines for the use and interpretation of assays for monitoring autophagy,” Autophagy, vol. 8, pp. 445–544, 2012. View at Google Scholar
  43. C. H. Jung, M. Seo, N. M. Otto, and D.-H. Kim, “ULK1 inhibits the kinase activity of mTORC1 and cell proliferation,” Autophagy, vol. 7, no. 10, pp. 1212–1221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. C. H. Jung, C. B. Jun, S.-H. Ro et al., “ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 1992–2003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. C. Jao, M. J. Ragusa, R. E. Stanley, and J. H. Hurley, “A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 5486–5491, 2013. View at Google Scholar
  46. M. Mapelli, L. Massimiliano, S. Santaguida, and A. Musacchio, “The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint,” Cell, vol. 131, no. 4, pp. 730–743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. K. G. Guruharsha, J.-F. Rual, B. Zhai et al., “A protein complex network of Drosophila melanogaster,” Cell, vol. 147, no. 3, pp. 690–703, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. I. P. Nezis, “Selective autophagy in Drosophila,” International Journal of Cell Biology, vol. 2012, Article ID 146767, 9 pages, 2012. View at Publisher · View at Google Scholar
  49. N. Fujita, E. Morita, T. Itoh et al., “Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin,” The Journal of Cell Biology, vol. 203, pp. 115–128, 2013. View at Google Scholar