Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 475280, 13 pages
http://dx.doi.org/10.1155/2014/475280
Research Article

Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications

1Department of Textile Engineering, Center of Excellence in Applied Nanotechnology, Isfahan University of Technology, Isfahan 84156-83111, Iran
2Department of Materials Chemistry, Uppsala University, 75121 Uppsala, Sweden
3Department of Engineering Sciences, Applied Materials Science, Uppsala University, 75121 Uppsala, Sweden
4Department of Physics, Chemistry and Biology, Division of Molecular Physics, Linkoping University, 58183 Linkoping, Sweden
5Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14965-161, Iran

Received 16 April 2013; Revised 19 December 2013; Accepted 27 December 2013; Published 13 February 2014

Academic Editor: Ulrich Kneser

Copyright © 2014 Fatemeh Ajalloueian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-Y. Wang, K.-H. Zhang, C.-Y. Fan, X.-M. Mo, H.-J. Ruan, and F.-F. Li, “Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration,” Acta Biomaterialia, vol. 7, no. 2, pp. 634–643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: a review,” Tissue Engineering, vol. 12, no. 5, pp. 1197–1211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, “Electrospun nanofiber scaffolds: engineering soft tissues,” Biomedical Materials, vol. 3, no. 3, Article ID 034002, pp. 1–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. K. S. Rho, L. Jeong, G. Lee et al., “Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing,” Biomaterials, vol. 27, no. 8, pp. 1452–1461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna, “Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation,” Biomaterials, vol. 25, no. 10, pp. 1883–1890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Ma, C. K. Chan, S. Liao, W. Y. K. Hwang, Q. Feng, and S. Ramakrishna, “Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells,” Biomaterials, vol. 29, no. 13, pp. 2096–2103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Li, M. J. Mondrinos, X. Chen, M. R. Gandhi, F. K. Ko, and P. I. Lelkes, “Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds,” Journal of Biomedical Materials Research A, vol. 79, no. 4, pp. 963–973, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin, “Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning,” Journal of Macromolecular Science A, vol. 38, no. 12, pp. 1231–1243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Nie, L. Y. Lee, H. Tong, and C.-H. Wang, “PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery,” Journal of Controlled Release, vol. 129, no. 3, pp. 207–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Zhang, “Electrospun chitosan-based nanofibers and their cellular compatibility,” Biomaterials, vol. 26, no. 31, pp. 6176–6184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. A. Sell, P. S. Wolfe, K. Garg, J. M. McCool, I. A. Rodriguez, and G. L. Bowlin, “The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues,” Polymers, vol. 2, no. 4, pp. 522–553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, “Electrospinning of collagen nanofibers,” Biomacromolecules, vol. 3, no. 2, pp. 232–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, vol. 63, no. 15, pp. 2223–2253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof, “Generation of synthetic elastin-mimetic small diameter fibers and fiber networks,” Macromolecules, vol. 33, no. 8, pp. 2989–2997, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Onishi and Y. Machida, “Biodegradation and distribution of water-soluble chitosan in mice,” Biomaterials, vol. 20, no. 2, pp. 175–182, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. M. Yang, W. Hu, X. D. Wang, and X. S. Gu, “The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo,” Journal of Materials Science, vol. 18, no. 11, pp. 2117–2121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” Reactive and Functional Polymers, vol. 46, no. 1, pp. 1–27, 2000. View at Google Scholar · View at Scopus
  18. X.-H. Chu, X.-L. Shi, Z.-Q. Feng, Z.-Z. Gu, and Y.-T. Ding, “Chitosan nanofiber scaffold enhances hepatocyte adhesion and function,” Biotechnology Letters, vol. 31, no. 3, pp. 347–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Wang, Q. Ao, W. Cao et al., “Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering,” Journal of Biomedical Materials Research A, vol. 79, no. 1, pp. 36–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-H. Jang, O. Castano, and H.-W. Kim, “Electrospun materials as potential platforms for bone tissue engineering,” Advanced Drug Delivery Reviews, vol. 61, no. 12, pp. 1065–1083, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Ohkawa, D. Cha, H. Kim, A. Nishida, and H. Yamamoto, “Electrospinning of chitosan,” Macromolecular Rapid Communications, vol. 25, no. 18, pp. 1600–1605, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Haider, W. A. Al-Masry, N. Bukhari, and M. Javid, “Preparation of the chitosan containing nanofibers by electrospinning chitosan-gelatin complexes,” Polymer Engineering and Science, vol. 50, no. 9, pp. 1887–1893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Bhattarai, Z. Li, J. Gunn et al., “Natural-synthetic polyblend nanofibers for biomedical applications,” Advanced Materials, vol. 21, no. 27, pp. 2792–2797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Duan, L. Wu, X. Yuan et al., “Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array,” Journal of Biomedical Materials Research A, vol. 83, no. 3, pp. 868–878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Duan, X. Yuan, Y. Zhu et al., “A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning,” European Polymer Journal, vol. 42, no. 9, pp. 2013–2022, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Wu, H. Li, S. Li et al., “Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning,” Journal of Biomedical Materials Research A, vol. 92, no. 2, pp. 563–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. X. Meng, W. Zheng, L. Li, and Y. F. Zheng, “Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold,” Materials Chemistry and Physics, vol. 125, no. 3, pp. 606–611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. D. Schiffman and C. L. Schauer, “Cross-linking chitosan nanofibers,” Biomacromolecules, vol. 8, no. 2, pp. 594–601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Qi, P. Hu, J. Xu, and A. Wang, “Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment,” Biomacromolecules, vol. 7, no. 8, pp. 2327–2330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. X. Meng, Y. S. Wang, C. Ma, W. Zheng, L. Li, and Y. F. Zheng, “Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering,” Materials Science and Engineering C, vol. 30, no. 8, pp. 1204–1210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Zhang, X. Yuan, L. Wu, Y. Han, and J. Sheng, “Study on morphology of electrospun poly(vinyl alcohol) mats,” European Polymer Journal, vol. 41, no. 3, pp. 423–432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Geng, O.-H. Kwon, and J. Jang, “Electrospinning of chitosan dissolved in concentrated acetic acid solution,” Biomaterials, vol. 26, no. 27, pp. 5427–5432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. You, J. H. Youk, S. W. Lee, B.-M. Min, S. J. Lee, and W. H. Park, “Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers,” Materials Letters, vol. 60, no. 6, pp. 757–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. N. Kim, J. Koh, Y. Lee, and H. Kim, “Preparation of pva/pan Bicomponent nanofiber via electrospinning and selective dissolution,” Journal of Applied Polymer Science, vol. 113, no. 1, pp. 274–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Sano, O. Hosoya, S. Taoka et al., “Relationship between solubility of chitosan in alcoholic solution and its gelation,” Chemical and Pharmaceutical Bulletin, vol. 47, no. 7, pp. 1044–1046, 1999. View at Google Scholar · View at Scopus
  36. N. T. Hiep and B.-T. Lee, “Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility,” Journal of Materials Science, vol. 21, no. 6, pp. 1969–1978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Liang, B. S. Hsiao, and B. Chu, “Functional electrospun nanofibrous scaffolds for biomedical applications,” Advanced Drug Delivery Reviews, vol. 59, no. 14, pp. 1392–1412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Sabol, L. Dancakova, P. Gal et al., “Immunohistological changes in skin wounds during the early periods of healing in a rat model,” Veterinarni Medicina, vol. 57, no. 2, pp. 77–82, 2012. View at Google Scholar · View at Scopus
  39. A. F. Laplante, L. Germain, F. A. Auger, and V. Moulin, “Mechanisms of wound reepithelialization: Hints from a tissue-engineered reconstructed skin to long-standing questions,” The FASEB Journal, vol. 15, no. 13, pp. 2377–2389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Brugnerotto, J. Lizardi, F. M. Goycoolea, W. Argüelles-Monal, J. Desbrières, and M. Rinaudo, “An infrared investigation in relation with chitin and chitosan characterization,” Polymer, vol. 42, no. 8, pp. 3569–3580, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. T. S. George, K. Samy, S. Guru, and N. Sankaranarayanan, “Extraction, purification and characterization of chitosan from endophytic fungi isolated from medicinal plants,” World Journal of Science and Technology, vol. 1, pp. 43–48, 2011. View at Google Scholar
  42. Y. Dong, Y. Ruan, H. Wang, Y. Zhao, and D. Bi, “Studies on glass transition temperature of chitosan with four techniques,” Journal of Applied Polymer Science, vol. 93, no. 4, pp. 1553–1558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Ogura, T. Kanamoto, M. Itoh, H. Miyashiro, and K. Tanaka, “Dynamic mechanical behavior of chitin and chitosan,” Polymer Bulletin, vol. 2, no. 5, pp. 301–304, 1980. View at Publisher · View at Google Scholar · View at Scopus
  44. E. A. El-Hefian, E. S. Elgannoudi, A. Mainal, and A. H. Yahaya, “Characterization of chitosan in acetic acid: rheological and thermal studies,” Turkish Journal of Chemistry, vol. 34, no. 1, pp. 47–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Wang, Z. Zhang, H. Chen, S. Zhang, and C. Xiong, “Preparation and characterization of biodegradable thermoplastic Elastomers (PLCA/PLGA blends),” Journal of Polymer Research, vol. 17, no. 1, pp. 77–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Arvanitoyannis, I. Kolokuris, A. Nakayama, N. Yamamoto, and S.-I. Aiba, “Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose,” Carbohydrate Polymers, vol. 34, no. 1-2, pp. 9–19, 1997. View at Google Scholar · View at Scopus
  47. D. Nguyen and X. Tian, “The expanding role of mouse genetics for understanding human biology and disease,” DMM Disease Models and Mechanisms, vol. 1, no. 1, pp. 56–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Ma, J. Xie, J. Jiang, and J. Wu, “Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration,” Biomaterials, vol. 35, pp. 630–641, 2014. View at Google Scholar
  49. E. Ranzato, M. Patrone, M. Pedrazzi, and B. Burlando, “Hmgb1 promotes wound healing of 3T3 mouse fibroblasts via rage-dependent ERK1/2 activation,” Cell Biochemistry and Biophysics, vol. 57, no. 1, pp. 9–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. C.-H. Jou, W.-C. Chen, M.-C. Yang et al., “In vitro biocompatibility of three-dimensional chitosan scaffolds immobilized with chondroitin-6-sulfate,” Polymers for Advanced Technologies, vol. 19, no. 5, pp. 377–384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Charernsriwilaiwat, P. Opanasopit, T. Rojanarata, and T. Ngawhirunpat, “Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing,” International Journal of Pharmaceutics, vol. 427, no. 2, pp. 379–384, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Ignatova, Z. Petkova, N. Manolova, N. Markova, and I. Rashkov, “Non-woven fibrous materials with antibacterial properties prepared by tailored attachment of quaternized chitosan to electrospun mats from maleic anhydride copolymer,” Macromolecular Bioscience, vol. 12, no. 1, pp. 104–115, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Jayakumar, M. Prabaharan, P. T. Sudheesh Kumar, S. V. Nair, and H. Tamura, “Biomaterials based on chitin and chitosan in wound dressing applications,” Biotechnology Advances, vol. 29, no. 3, pp. 322–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Martin, “Wound healing—aiming for perfect skin regeneration,” Science, vol. 276, no. 5309, pp. 75–81, 1997. View at Publisher · View at Google Scholar · View at Scopus