Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 481914, 8 pages
http://dx.doi.org/10.1155/2014/481914
Review Article

Folic Acid Supplementation and Preterm Birth: Results from Observational Studies

1Sezione di Ostetricia e Ginecologia, Dipartimento di Scienze della Vita e della Riproduzione, Università degli Studi di Verona, Piazzale Ludovico Scuro 10, 37134 Verona, Italy
2Azienda Ospedaliera Universitaria Integrata Verona, Piazzale Stefani 1, 37126 Verona, Italy

Received 18 November 2013; Revised 1 January 2014; Accepted 1 January 2014; Published 3 March 2014

Academic Editor: Allegaert Karel

Copyright © 2014 Elena Mantovani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Lucock, “Folic acid: nutritional biochemistry, molecular biology, and role in disease processes,” Molecular Genetics and Metabolism, vol. 71, no. 1-2, pp. 121–138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. H. McNulty and K. Pentieva, “Folate bioavailability,” Proceedings of the Nutrition Society, vol. 63, no. 4, pp. 529–536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Food and Nutrition Board and Institute of Medicine, “Folate,” in Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline, pp. 196–305, The National Academies Press, Washington, DC, USA, 1998. View at Google Scholar
  4. J. F. Gregory III, “Case study: folate bioavailability,” Journal of Nutrition, vol. 131, supplement 4, pp. 1376S–1382S, 2001. View at Google Scholar · View at Scopus
  5. T. Tamura and M. F. Picciano, “Folate and human reproduction,” American Journal of Clinical Nutrition, vol. 83, no. 5, pp. 993–1016, 2006. View at Google Scholar · View at Scopus
  6. L. B. Bailey and J. F. Gregory III, “Folate metabolism and requirements,” Journal of Nutrition, vol. 129, no. 4, pp. 779–782, 1999. View at Google Scholar · View at Scopus
  7. K. S. Crider, A. M. Cordero, Y. P. Qi, J. Mulinare, N. F. Dowling, and R. J. Berry, “Prenatal folic acid and risk of asthma in children: a systematic review and meta-analysis,” in The American Journal of Clinical Nutrition, vol. 98, pp. 1272–1281, 2013. View at Google Scholar
  8. K. S. Crider, T. P. Yang, R. J. Berry, and L. B. Bailey, “Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role,” in Advances in Nutrition, vol. 3, pp. 21–38, 2012. View at Google Scholar
  9. Institute of Medicine and Committee (IOM), Dietary Reference Intake: Folate, Other B Vitamins and Choline, National Academy Press, Washington, DC, USA, 1998.
  10. A. Wu, I. Chanarin, G. Slavin, and A. J. Levi, “Folate deficiency in the alcoholic—its relationship to clinical and haematological abnormalities, liver disease and folate stores,” British Journal of Haematology, vol. 29, no. 3, pp. 469–478, 1975. View at Google Scholar · View at Scopus
  11. P. Nguyen, R. Boskovic, P. Yazdani, B. Kapur, H. Vandenberghe, and G. Koren, “Comparing folic acid pharmacokinetics among women of childbearing age: single dose ingestion of 1.1 versus 5 MG folic acid,” The Canadian Journal of Clinical Pharmacology, vol. 15, no. 2, pp. e314–e322, 2008. View at Google Scholar · View at Scopus
  12. N. J. Wald, M. R. Law, J. K. Morris, and D. S. Wald, “Quantifying the effect of folic acid,” The Lancet, vol. 15, pp. 2069–2073, 2001, Erratum in The Lancet, vol. 359, no. 9306, p. 630, 2002. View at Google Scholar
  13. E. Ahn, B. Kapur, and G. Koren, “Study on circadian variation in folate pharmacokinetics,” Canadian Journal of Clinical Pharmacology, vol. 12, no. 1, pp. e4–e9, 2005. View at Google Scholar · View at Scopus
  14. P. Nguyen, A. Nava-Ocampo, A. Levy et al., “Effect of iron content on the tolerability of prenatal multivitamins in pregnancy,” BMC Pregnancy Childbirth, vol. 15, pp. 8–17, 2008. View at Google Scholar
  15. S. Bramswig, R. Prinz-Langenohl, Y. Lamers et al., “Supplementation with a multivitamin containing 800 µg of folic acid shortens the time to reach the preventive red blood cell folate concentration in healthy women,” International Journal for Vitamin and Nutrition Research, vol. 79, no. 2, pp. 61–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Hao, Q.-H. Yang, Z. Li et al., “Folate status and homocysteine response to folic acid doses and withdrawal among young Chinese women in a large-scale randomized double-blind trial,” American Journal of Clinical Nutrition, vol. 88, no. 2, pp. 448–457, 2008. View at Google Scholar · View at Scopus
  17. A. E. Czeizel and I. Dudas, “Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation,” The New England Journal of Medicine, vol. 327, no. 26, pp. 1832–1835, 1992. View at Google Scholar · View at Scopus
  18. R. J. Berry, Z. Li, J. D. Erickson et al., “Prevention of neural-tube defects with folic acid in China,” The New England Journal of Medicine, vol. 341, no. 20, pp. 1485–1490, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Wald, J. Sneddon, J. Densem, C. Frost, and R. Stone, “Prevention of neural tube defects: results of the medical research council vitamin study,” The Lancet, vol. 338, no. 8760, pp. 131–137, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Obeid, M. Kasoha, S. H. Kirsch, W. Munz, and W. Herrmann, “Concentrations of unmetabolized folic acid and primary folate forms in pregnant women at delivery and in umbilical cord blood,” American Journal of Clinical Nutrition, vol. 92, no. 6, pp. 1416–1422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Tam, D. O'Connor, and G. Koren, “Circulating unmetabolized Folic Acid: relationship to folate status and effect of supplementation,” Obstetrics and Gynecology International, vol. 2012, Article ID 485179, 17 pages, 2012. View at Publisher · View at Google Scholar
  22. M. R. Sweeney, J. McPartlin, D. G. Weir et al., “Evidence of unmetabolised folic acid and cord blood of newborn and serum of 4-day-old infants,” British Journal of Nutrition, vol. 94, no. 5, pp. 727–730, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Scott, “Catabolism of folates,” in Folates and Pterins: Chemistry and BioChemistry of Folates, R. L. Blakley and S. J. Bankovic, Eds., vol. 1, pp. 307–327, John Wiley, New York, NY, USA, 1984. View at Google Scholar
  24. J. McPartlin, A. Halligan, J. M. Scott, M. Darling, and D. G. Weir, “Accelerated folate breakdown in pregnancy,” The Lancet, vol. 341, no. 8838, pp. 148–149, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Rolschau, J. Date, and K. Kristoffersen, “Folic acid supplement and intrauterine growth,” Acta Obstetricia et Gynecologica Scandinavica, vol. 58, no. 4, pp. 343–346, 1979. View at Google Scholar · View at Scopus
  26. W. L. D. M. Nelen, H. J. Blom, E. A. P. Steegers, M. Den Heijer, and T. K. A. B. Eskes, “Hyperhomocysteinemia and recurrent early pregnancy loss: a meta-analysis,” Fertility and Sterility, vol. 74, no. 6, pp. 1196–1199, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Tikkanen, “Placental abruption: epidemiology, risk factors and consequences,” Acta Obstetricia et Gynecologica Scandinavica, vol. 90, no. 2, pp. 140–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. R. P. Steegers-Theunissen, C. A. Van Iersel, P. G. Peer, W. L. Nelen, and E. A. Steegers, “Hyperhomocysteinemia, pregnancy complications, and the timing of investigation,” Obstetrics and Gynecology, vol. 104, no. 2, pp. 336–343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. M. Cotter, A. M. Molloy, J. M. Scott, and S. F. Daly, “Elevated plasma homocysteine in early pregnancy: a risk factor for the development of severe preeclampsia,” American Journal of Obstetrics and Gynecology, vol. 185, no. 4, pp. 781–785, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. R. W. Smithells, S. Sheppard, J. Wild, and C. J. Schorah, “Prevention of neural tube defect recurrences in Yorkshire: final report,” The Lancet, vol. 2, no. 8661, pp. 498–499, 1989. View at Google Scholar · View at Scopus
  31. R. D. Wilson, J.-A. Johnson, P. Wyatt et al., “Pre-conceptional vitamin/folic acid supplementation 2007: the use of folic acid in combination with a multivitamin supplement for the prevention of neural tube defects and other congenital anomalies,” Journal of obstetrics and gynaecology Canada, vol. 29, no. 12, pp. 1003–1026, 2007. View at Google Scholar · View at Scopus
  32. United States Preventive Services Task Force, “Folic acid for the precention of neural tube defects: U.S. Preventive Services Task Force recommendation statement,” Annals of Internal Medicine, vol. 150, no. 9, pp. 626–631, 2009. View at Google Scholar
  33. World Health Organization, “Prevention of neural tube defects. Standards for maternal and neonatal care,” 2006, http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/a91272/en/.
  34. J. R. Bale, B. J. Stoll, and A. O. Lucas, IOM 2003 Reducing Birth Defects: Meeting the Challenge in the Developing World, National Academies Press, Washington, DC, USA, 2003.
  35. “Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid. Final rule. 21 CFR Parts 136, 137, and 139,” Federal Register, vol. 61, pp. 8781–87897, 1996.
  36. L. M. De-Regil, A. C. Fernández-Gaxiola, T. Dowswell, and J. P. Peña-Rosas, “Effects and safety of periconceptional folate supplementation for preventing birth defects,” Cochrane Database of Systematic Reviews, no. 10, Article ID CD007950, 2010. View at Google Scholar · View at Scopus
  37. R. L. Goldenberg, J. F. Culhane, J. D. Iams, and R. Romero, “Epidemiology and causes of preterm birth,” The Lancet, vol. 371, no. 9606, pp. 75–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. March of Dimes, The Partnership of Maternal, Newborn, and Child Health, Save the Children; World Health Organization, Born Too Soon: the Global Action Report on Preterm Birth, Geneva, Switzerland, 2012.
  39. S. Timmermans, V. W. V. Jaddoe, L. M. Silva et al., “Folic acid is positively associated with uteroplacental vascular resistance: the Generation R Study,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 21, no. 1, pp. 54–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. P. J. Williams, J. N. Bulmer, B. A. Innes, and F. B. Pipkin, “Possible roles for folic acid in the regulation of trophoblast invasion and placental development in normal early human pregnancy,” Biology of Reproduction, vol. 84, no. 6, pp. 1148–1153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Parazzini, F. Chiaffarino, E. Ricci, L. Improta, and G. Monni, “Homocysteine, red cell, and plasma folate concentrations and birth weight in Italian women: results from a prospective study,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 24, no. 3, pp. 427–431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Clarke, “Lowering blood homocysteine with folic acid-based supplements: meta-analysis of randomised trials,” Indian Heart Journal, vol. 52, supplement 7, pp. S59–S64, 2000. View at Google Scholar
  43. E. A. P. Steegers, P. Von Dadelszen, J. J. Duvekot, and R. Pijnenborg, “Pre-eclampsia,” The Lancet, vol. 376, no. 9741, pp. 631–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. P. M. Steegers-Theunissen and E. A. P. Steegers, “Nutrient-gene interactions in early pregnancy: a vascular hypothesis,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 106, no. 2, pp. 115–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. N. H. van Mil, A. M. Oosterbaan, and R. P. M. Steegers-Theunissen, “Teratogenicity and underlying mechanisms of homocysteine in animal models: a review,” Reproductive Toxicology, vol. 30, no. 4, pp. 520–531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Di Simone, N. Maggiano, D. Caliandro et al., “Homocysteine induces trophoblast cell death with apoptotic features,” Biology of Reproduction, vol. 69, no. 4, pp. 1129–1134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Yamada, M. Morikawa, T. Yamada et al., “First-trimester serum folate levels and subsequent risk of abortion and preterm birth among Japanese women with singleton pregnancies,” Archives of Gynecology and Obstetrics, vol. 287, no. 1, pp. 9–14, 2013. View at Google Scholar
  48. M. Dhobale, P. Chavan, A. Kulkarni, S. Mehendale, H. Pisal, and S. Joshi, “Reduced folate, increased vitamin B(12) and homocysteine concentrations in women delivering preterm,” Annals of Nutrition and Metabolism, vol. 61, pp. 7–14, 2012. View at Google Scholar
  49. N. E. Bergen, V. W. V. Jaddoe, S. Timmermans et al., “Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: the generation R study,” British Journal of Obstetrics and Gynaecology, vol. 119, no. 6, pp. 739–751, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Arias, L. Rodriquez, S. C. Rayne, and F. T. Kraus, “Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes,” American Journal of Obstetrics and Gynecology, vol. 168, no. 2, pp. 585–591, 1993. View at Google Scholar · View at Scopus
  51. S. E. Vollset, H. Refsum, L. M. Irgens et al., “Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine Study,” American Journal of Clinical Nutrition, vol. 71, no. 4, pp. 962–968, 2000. View at Google Scholar · View at Scopus
  52. R. L. Goldenberg, J. C. Hauth, and W. W. Andrews, “Intrauterine infection and preterm delivery,” The New England Journal of Medicine, vol. 342, no. 20, pp. 1500–1507, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. K. B. Holven, P. Aukrust, T. Holm, L. Ose, and M. S. Nenseter, “Folic acid treatment reduces chemokine release from peripheral blood mononuclear cells in hyperhomocysteinemic subjects,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 4, pp. 699–703, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. S. E. Ferguson, G. N. Smith, M. E. Salenieks, R. Windrim, and M. C. Walker, “Preterm premature rupture of membranes: nutritional and socioeconomic factors,” Obstetrics and Gynecology, vol. 100, no. 6, pp. 1250–1256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. E. J. Knudtson, K. Smith, B. M. Mercer et al., “Serum homocysteine levels after preterm premature rupture of the membranes,” American Journal of Obstetrics and Gynecology, vol. 191, no. 2, pp. 537–541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. W. G. Johnson, T. O. Scholl, J. R. Spychala, S. Buyske, E. S. Stenroos, and X. Chen, “Common dihydrofolate reductase 19-base pair deletion allele: a novel risk factor for preterm delivery,” American Journal of Clinical Nutrition, vol. 81, no. 3, pp. 664–668, 2005. View at Google Scholar · View at Scopus
  57. Z. S. Lassi, R. A. Salam, B. A. Haider, and Z. A. Bhutta, “Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes,” Cochrane Database of Systematic Reviews, vol. 28, no. 3, 2013. View at Google Scholar
  58. A. F. Fleming, J. P. Hendrickse, and N. C. Allan, “The prevention of megaloblastic anaemia in pregnancy in Nigeria,” The Journal of Obstetrics and Gynaecology of the British Commonwealth, vol. 75, no. 4, pp. 425–432, 1968. View at Google Scholar · View at Scopus
  59. I. Blot, E. Papiernik, and J. P. Kaltwasser, “Influence of routine administration of folic acid and iron during pregnancy,” Gynecologic and Obstetric Investigation, vol. 12, no. 6, pp. 294–304, 1981. View at Google Scholar · View at Scopus
  60. D. H. M. Charles, A. R. Ness, D. Campbell, G. D. Smith, E. Whitley, and M. H. Hall, “Folic acid supplements in pregnancy and birth outcome: re-analysis of a large randomised controlled trial and update of Cochrane review,” Paediatric and Perinatal Epidemiology, vol. 19, no. 2, pp. 112–124, 2005. View at Google Scholar · View at Scopus
  61. K. Fekete, C. Berti, M. Trovato et al., “Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation,” Nutrition Journal, vol. 11, no. 75, 2012. View at Google Scholar
  62. F. Chiaffarino, G. B. Ascone, R. Bortolus et al., “Effects of folic acid supplementation on pregnancy outcomes: a review of randomized clinical trials,” Minerva Ginecologica, vol. 62, no. 4, pp. 293–301, 2010. View at Google Scholar · View at Scopus
  63. E. Papadopoulou, N. Stratakis, T. Roumeliotaki et al., “The effect of high doses of folic acid and iron supplementation in early-to-mid pregnancy on prematurity and fetal growth retardation: the mother-child cohort study in Crete, Greece (Rhea study),” European Journal of Nutrition, vol. 52, pp. 327–336, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. A. E. Czeizel, E. H. Puhó, Z. Langmar, N. Acs, and F. Bánhidy, “Possible association of folic acid supplementation during pregnancy with reduction of preterm birth: a population-based study,” The European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 148, pp. 135–140, 2010. View at Google Scholar
  65. S. Timmermans, V. W. V. Jaddoe, A. Hofman, R. P. M. Steegers-Theunissen, and E. A. P. Steegers, “Periconception folic acid supplementation, fetal growth and the risks of low birth weight and preterm birth: The Generation R Study,” British Journal of Nutrition, vol. 102, no. 5, pp. 777–785, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. G. M. Shaw, S. L. Carmichael, W. Yang, and A. M. Siega-Riz, “Periconceptional intake of folic acid and food folate and risks of preterm delivery,” American Journal of Perinatology, vol. 28, no. 10, pp. 747–751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Alwan, D. Greenwood, N. Simpson, H. McArdle, and J. Cade, “The relationship between dietary supplement use in late pregnancy and birth outcomes: a cohort study in British women,” British Journal of Obstetrics and Gynaecology, vol. 117, no. 7, pp. 821–829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Bukowski, F. D. Malone, F. T. Porter et al., “Preconceptional folate supplementation and the risk of spontaneous preterm birth: a cohort study,” PLoS Medicine, vol. 6, no. 5, Article ID e1000061, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. J. M. Catov, L. M. Bodnar, J. Olsen, S. Olsen, and E. A. Nohr, “Periconceptional multivitamin use and risk of preterm or small-for-gestational-age Births in the Danish National birth cohort,” American Journal of Clinical Nutrition, vol. 94, no. 3, pp. 906–912, 2011. View at Publisher · View at Google Scholar · View at Scopus