Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 503162, 14 pages
http://dx.doi.org/10.1155/2014/503162
Research Article

MicroRNA Profiling Reveals Unique miRNA Signatures in IGF-1 Treated Embryonic Striatal Stem Cell Fate Decisions in Striatal Neurogenesis In Vitro

1Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
2Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund Street, Room 1250, Houston, TX 77030, USA
3Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
4Laboratory of Neuropsychopharmacology, FFCLRP, University of Sao Paulo (USP), Avenida Bandeirantes 3900, Monte Alegre, Ribeirao Preto, SP 14040-900, Brazil
5Department of Medical Microbiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
6Departments of Pediatrics-Neurology and Neuroscience, Program in Developmental Biology, Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund Street, Room 1250, Houston, TX 77030, USA
7Center for Neuroscience Services and Research, Universiti Sains Malaysia, Sultanah Zainab 2 Road, 16150 Kubang Kerian, Kelantan, Malaysia
8Neuroscience Department, Universiti Sains Malaysia Hospital, USM Hospital Road, 16150 Kubang Kerian, Kelantan, Malaysia

Received 10 April 2014; Revised 25 June 2014; Accepted 2 July 2014; Published 1 September 2014

Academic Editor: Aijun Wang

Copyright © 2014 Soumya Pati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Bales, A. K. Wagner, A. E. Kline, and C. E. Dixon, “Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 7, pp. 981–1003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Fasano and R. Brambilla, “Cellular mechanisms of striatum-dependent behavioral plasticity and drug addiction,” Current Molecular Medicine, vol. 2, no. 7, pp. 649–665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Willaime-Morawek and D. van der Kooy, “Cortex- and striatum- derived neural stem cells produce distinct progeny in the olfactory bulb and striatum,” The European Journal of Neuroscience, vol. 27, no. 9, pp. 2354–2362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. J. Abraham, K. Cui, Q. Tang, and K. Zhao, “Dynamic regulation of epigenomic landscapes during hematopoiesis,” BMC Genomics, vol. 14, no. 1, article 193, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. B. A. Reynolds, W. Tetzlaff, and S. Weiss, “A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes,” The Journal of Neuroscience, vol. 12, no. 11, pp. 4565–4574, 1992. View at Google Scholar · View at Scopus
  6. B. Pardo and P. Honegger, “Differentiation of rat striatal embryonic stem cells in vitro: monolayer culture vs. three-dimensional coculture with differentiated brain cells,” Journal of Neuroscience Research, vol. 59, pp. 504–512, 2000. View at Google Scholar
  7. N. E. Supeno, S. Pati, R. A. Hadi et al., “IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells,” International Journal of Medical Sciences, vol. 10, no. 5, pp. 522–531, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Arsenijevic, S. Weiss, B. Schneider, and P. Aebischer, “Insulin-like growth factor-1 is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2,” Journal of Neuroscience, vol. 21, no. 18, pp. 7194–7202, 2001. View at Google Scholar · View at Scopus
  9. M.Y-. Chang, C.-H. Park, H. Son, Y.-S. Lee, and S.-H. Lee, “Developmental stage-dependent self-regulation of embryonic cortical precursor cell survival and differentiation by leukemia inhibitory factor,” Cell Death and Differentiation, vol. 11, no. 9, pp. 985–996, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Sarkar, B. K. Dey, and A. Dutta, “MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A,” Molecular Biology of the Cell, vol. 21, no. 13, pp. 2138–2149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Lugli, J. Larson, M. E. Martone, Y. Jones, and N. R. Smalheiser, “Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner,” Journal of Neurochemistry, vol. 94, no. 4, pp. 896–905, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. A. Goff, J. Davila, M. R. Swerdel et al., “Ago2 immunoprecipitation identifies predicted MicroRNAs in human embryonic stem cells and neural precursors,” PLoS ONE, vol. 4, no. 9, Article ID e7192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Song and L. Wang, “Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRγ,” Nucleic Acids Research, vol. 36, no. 18, pp. 5727–5735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Erlandsson, K. Brännvall, S. Gustafsdottir, B. Westermark, and K. Forsberg-Nilsson, “Autocrine/paracrine platelet-derived growth factor regulates proliferation of neural progenitor cells,” Cancer Research, vol. 66, no. 16, pp. 8042–8048, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Li, Y. W. Pan, W. Wang et al., “Targeted deletion of the ERK5 MAP kinase impairs neuronal differentiation, migration, and survival during adult neurogenesis in the olfactory bulb,” PLoS ONE, vol. 8, no. 4, Article ID e61948, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. G. M. Gilad and L. E. Varon, “Transglutaminase activity in rat brain: characterization, distribution, and changes with age,” Journal of Neurochemistry, vol. 45, no. 5, pp. 1522–1526, 1985. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Ables, J. J. Breunig, A. J. Eisch, and P. Rakic, “Not(ch) just development: notch signalling in the adult brain,” Nature Reviews Neuroscience, vol. 12, no. 5, pp. 269–283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Groszer, R. Erickson, D. D. Scripture-Adams et al., “PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 1, pp. 111–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Li, D. A. Scott, E. Hatch, X. Tian, and S. L. Mansour, “Dusp6 (Mkp3) is a negative feedback regulator of FgF-stimulated ERK signaling during mouse development,” Development, vol. 134, no. 1, pp. 167–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Liu, H. Feng, R. Bachoo et al., “SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans,” Journal of Clinical Investigation, vol. 121, no. 3, pp. 905–917, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Qin, J. M. Haberbusch, Z. Zhang, K. J. Soprano, and D. R. Soprano, “Pre-B cell leukemia transcription factor (PBX) proteins are important mediators for retinoic acid-dependent endodermal and neuronal differentiation of mouse embryonal carcinoma P19 cells,” The Journal of Biological Chemistry, vol. 279, no. 16, pp. 16263–16271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Jovicic, J. F. Zaldivar Jolissaint, R. Moser, M. D. F. Silva Santos, and R. Luthi-Carter, “MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's disease-related mechanisms,” PLoS ONE, vol. 8, no. 1, Article ID e54222, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Bar and R. Dikstein, “MiR-22 forms a regulatory loop in pten/akt pathway and modulates signaling kinetics,” PLoS ONE, vol. 5, no. 5, Article ID e10859, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Konig, M. B. Wilkie, and J. M. Lauder, “Tyrosine hydroxylase and serotonin containing cells in embryonic rat rhombencephalon: a whole-mount immunocytochemical study,” Journal of Neuroscience Research, vol. 20, no. 2, pp. 212–223, 1988. View at Google Scholar · View at Scopus
  25. S. Ye, Z. Su, J. Zhang, X. Qian, Q. Zhuge, and Y. Zeng, “Differential centrifugation in culture and differentiation of rat neural stem cells,” Cellular and Molecular Neurobiology, vol. 28, no. 4, pp. 511–517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Li, J. Xu, Y. Bai et al., “Isolation and characterization of neural stem cells from human fetal striatum,” Biochemical and Biophysical Research Communications, vol. 326, no. 2, pp. 425–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Tanja Vogel, “Insulin/IGF-signalling in embryonic and adult neural proliferation and differentiation in the mammalian central nervous system,” in Trends in Cell Signaling Pathways in Neuronal Fate Decision, S. Wislet-Gendebien, Ed., pp. 38–73, InTech, 2013. View at Google Scholar
  28. J. Hsieh, J. B. Aimone, B. K. Kaspar, T. Kuwabara, K. Nakashima, and F. H. Gage, “IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes,” Journal of Cell Biology, vol. 164, no. 1, pp. 111–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Wagner, S. Bork, P. Horn et al., “Aging and replicative senescence have related effects on human stem and progenitor cells,” PLoS ONE, vol. 4, no. 6, Article ID e5846, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. R. Ferrón, M. Á. Marqués-Torrejón, H. Mira et al., “Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis,” Journal of Neuroscience, vol. 29, no. 46, pp. 14394–14407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Doetsch, “A niche for adult neural stem cells,” Current Opinion in Genetics and Development, vol. 13, no. 5, pp. 543–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. J.-A. Lee, D.-J. Jang, and B.-K. Kaang, “Two major gate-keepers in the self-renewal of neural stem cells: Erk1/2 and PLC1 in FGFR signaling,” Molecular Brain, vol. 2, no. 1, article 15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Moon, J. Yoo, V. Matarazzo, Y. K. Sung, E. J. Kim, and G. V. Ronnett, “Leukemia inhibitory factor inhibits neuronal terminal differentiation through STAT3 activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 9015–9020, 2002. View at Publisher · View at Google Scholar · View at Scopus