Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 512369, 6 pages
http://dx.doi.org/10.1155/2014/512369
Research Article

Role of Dried Fruits of Carissa carandas as Anti-Inflammatory Agents and the Analysis of Phytochemical Constituents by GC-MS

1Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632 014, India
2Department of Pharmacology, NGSM Institute of Pharmaceutical Science, Deralakatte, Mangalore 574018, India

Received 28 February 2014; Revised 27 March 2014; Accepted 27 March 2014; Published 27 April 2014

Academic Editor: Kota V. Ramana

Copyright © 2014 N. Anupama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. P. Gonzalez, R. S. Vega, M. G. Chavez, M. A. Z. Sanchez, and S. P. Gutierrez, “Anti-inflammatory activity and composition of senecio salignus kunth,” BioMed Research International, vol. 2013, Article ID 814693, 4 pages, 2013. View at Publisher · View at Google Scholar
  2. J. Guay, K. Bateman, R. Gordon, J. Mancini, and D. Riendeau, “Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1,” Journal of Biological Chemistry, vol. 279, no. 23, pp. 24866–24872, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Fan and A. B. Malik, “Toll-like receptor-4 (TLR4) signaling augments chemokine-induced neutrophil migration by modulating cell surface expression of chemokine receptors,” Nature Medicine, vol. 9, no. 3, pp. 315–321, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Begum, A. S. Saqib, and S. S. Bina, “Carandinol: first isohopane triterpene from the leaves of Carissa carandas L. and its cytotoxicity against cancer cell lines,” Phytochemistry Letters, vol. 6, pp. 91–95, 2013. View at Publisher · View at Google Scholar
  5. J. Ya'u, A. H. Yaro, M. S. Abubakar, J. A. Anuka, and I. M. Hussaini, “Anticonvulsant activity of Carissa edulis (Vahl) (Apocynaceae) root bark extract,” Journal of Ethnopharmacology, vol. 120, no. 2, pp. 255–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. R. Itankar, S. J. Lokhande, P. R. Verma, S. K. Arora, R. A. Sahu, and A. T. Patil, “Antidiabetic potential of unripe Carissa carandas Linn. fruit extract,” Journal of Ethnopharmacology, vol. 135, no. 2, pp. 430–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. Harborne, Phytochemical Methods A Guide to Modern Techniques of Plant Analysis, Springer, 3rd edition, 1998.
  8. S. Arun kumar and M. Muthuselvam, “Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens,” World Journal of Agricultural Sciences, vol. 5, no. 5, pp. 572–576, 2009. View at Google Scholar
  9. A. Basu and A. K. N. Chaudhuri, “Preliminary studies on the antiinflammatory and analgesic activities of Calotropis procera root extract,” Journal of Ethnopharmacology, vol. 31, no. 3, pp. 319–324, 1991. View at Google Scholar · View at Scopus
  10. H. Sadeghi, V. Hajhashemi, M. Minaiyan, A. Movahedian, and A. Talebi, “Further studies on anti-inflammatory activity of maprotiline in carrageenan-induced paw edema in rat,” International Immunopharmacology, vol. 15, pp. 505–510, 2013. View at Publisher · View at Google Scholar
  11. P. V. Neha Mohan, V. Suganthi, and S. Gowri, “Evaluation of anti-inflammatory activity in ethanolic extract of Coriandrum sativum L. using Carrageenan induced paw oedema in albino rats,” Der Pharma Chemica, vol. 5, no. 2, pp. 139–143, 2013. View at Google Scholar
  12. J. A. Castro, H. A. Sasame, H. Sussman, and J. R. Gillette, “Diverse effects of SKF 525-A and antioxidants on carbon tetrachloride-induced changes in liver microsomal P-450 content and ethylmorphine metabolism,” Life Sciences, vol. 7, no. 3, pp. 129–136, 1968. View at Google Scholar · View at Scopus
  13. K. Alam, D. Pathak, and S. H. Ansar, “Evaluation of anti-inflammatory activity of Ammomum subulatum fruit extract,” International Journal of Pharmaceutical Sciences and Drug Research, vol. 3, no. 1, pp. 35–37, 2011. View at Google Scholar
  14. M. Mueller, S. Hobiger, and A. Jungbauer, “Anti-inflammatory activity of extracts from fruits, herbs and spices,” Food Chemistry, vol. 122, no. 4, pp. 987–996, 2010. View at Publisher · View at Google Scholar · View at Scopus