Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 545038, 7 pages
http://dx.doi.org/10.1155/2014/545038
Research Article

HPLC-DAD Analysis, Antileishmanial, Antiproliferative, and Antibacterial Activities of Lacistema pubescens: An Amazonian Medicinal Plant

1Bioactive Natural Products Laboratory, Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
2Department of Parasitology, Microbiology and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
3Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil

Received 13 February 2014; Revised 27 June 2014; Accepted 17 July 2014; Published 7 August 2014

Academic Editor: Fátima Ribeiro-Dias

Copyright © 2014 Josiane Mello da Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. United Kingdom: Lacistemataceae Holistic Database, 2008, http://www.lacistemataceae.org/.
  2. L. C. Di Stasi and C. A. Hiruma-Lima, Plantas Medicinais na Amazônia e na Mata Atlântica, Edited by: J. H. Gutierre, Editora UNESP, 2nd edition, 2002.
  3. W. L. Barbosa and L. N. Pinto, “Documentação e valorização da fitoterapia tradicional Kayapó nas aldeias A'Ukre e Pykanu-sudeste do Pará,” Revista Brasileira de Farmacognosia, vol. 13, pp. 47–49, 2003. View at Google Scholar
  4. V. Roumy, G. Garcia-Pizango, A. L. Gutierrez-Choquevilca et al., “Amazonian plants from Peru used by Quechua and Mestizo to treat malaria with evaluation of their activity,” Journal of Ethnopharmacology, vol. 112, no. 3, pp. 482–489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. E. Wall, M. C. Wani, T. J. Hughes, and H. Taylor, “Plant antimutagenic agents, 1. General bioassay and isolation procedures,” Journal of Natural Products, vol. 51, no. 5, pp. 866–873, 1988. View at Publisher · View at Google Scholar · View at Scopus
  6. D. G. Agripino, M. E. Lima, M. R. Silva et al., “Screening of Brazilian plants for antimicrobial and dnadamaging activities. I. Atlantic rain forest. Ecological station juréia-itatins,” Biota Neotropica, vol. 4, pp. 1–15, 2004. View at Google Scholar
  7. I. C. Simoni, A. P. S. Manha, L. Sciessere, V. M. H. Hoe, V. H. Takinami, and M. J. Fernandes, “Evaluation of the antiviral activity of Brazilian cerrado plants against animal viruses,” Virus Reviews & Research, vol. 12, pp. 1–17, 2007. View at Google Scholar
  8. N. R. S. Silva, Florística e estrutura horizontal de uma floresta estacional semidecidual montana—mata do Juquinha de Paula, Viçosa, MG [M.S. thesis], Federal University of Viçosa, Viçosa , Brazil, 2002.
  9. C. T. Silva, G. G. Reis, M. G. F. Reis, E. Silva, and R. A. Chaves, “Avaliação temporal da florística arbórea de uma floresta secundária no município de Viçosa, Minas Gerais,” Revista Árvore, vol. 28, pp. 429–441, 2004. View at Google Scholar
  10. F. A. P. Sobrinho, Conhecimento etnobotânico de mateiros residentes no entorno de Unidades de Conservação no estado do Rio de Janeiro [M.S. thesis], Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil, 2007.
  11. E. F. S. Trindade, Atributos físico-hídricos e matéria orgânica do solo em função de sistemas de uso e manejo da vegetação secundária [M.S. thesis], University of Amazônia, 2007.
  12. J. M. Silva, E. V. S. Motta, R. Mendes, and E. Scio, “Caracterização fitoquímica e avaliação da capacidade antioxidante de diferentes partições de Lacistema pubescens Mart.,” HU Revista, vol. 37, pp. 342–347, 2011. View at Google Scholar
  13. J. M. da Silva, E. V. da Motta, R. F. Mendes et al., “Anti-inflammatory and antinociceptive activities of the hexane extract of lacistema pubescens mart. leaves,” Pharmacologyonline, vol. 1, no. 1, pp. 9–15, 2012. View at Google Scholar · View at Scopus
  14. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Publisher · View at Google Scholar · View at Scopus
  15. CLSI-Manual Clinical and Laboratory Standards Institute; Twelth informational suplement M100-512, 2002.
  16. J. Alvar, I. D. Vélez, C. Bern et al., “Leishmaniasis worldwide and global estimates of its incidence,” PLoS ONE, vol. 7, no. 5, Article ID e35671, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. L. Croft and G. H. Coombs, “Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs,” Trends in Parasitology, vol. 19, no. 11, pp. 502–508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Monzote, “Current treatment of leishmaniasis: a review,” The Open Antimicrobial Agents Journal, vol. 1, pp. 9–19, 2009. View at Google Scholar
  19. P. Cos, A. J. Vlietinck, D. V. Berghe, and L. Maes, “Anti-infective potential of natural products: how to develop a stronger in vitro “proof-of-concept”,” Journal of Ethnopharmacology, vol. 106, no. 3, pp. 290–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. V. A. Santos, K. M. Leite, M. Da Costa Siqueira et al., “Antiprotozoal activity of quinonemethide triterpenes from Maytenus ilicifolia (Celastraceae),” Molecules, vol. 18, no. 1, pp. 1053–1062, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Houghton, R. Fang, I. Techatanawat, G. Steventon, P. J. Hylands, and C. C. Lee, “The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity,” Methods, vol. 42, no. 4, pp. 377–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Escobar, S. Matu, C. Marques, and S. L. Croft, “Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH3 (edelfosine) and amphotericin B,” Acta Tropica, vol. 81, no. 2, pp. 151–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. S. L. Croft, S. Sundar, and A. H. Fairlamb, “Drug resistance in leishmaniasis,” Clinical Microbiology Reviews, vol. 19, no. 1, pp. 111–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Sereno, A. Cordeiro da Silva, F. Mathieu-Daude, and A. Ouaissi, “Advances and perspectives in Leishmania cell based drug-screening procedures,” Parasitology International, vol. 56, no. 1, pp. 3–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. H. Glew, A. K. Saha, S. Das, and A. T. Remaley, “Biochemistry of the Leishmania species,” Microbiological Reviews, vol. 52, no. 4, pp. 412–432, 1988. View at Google Scholar · View at Scopus
  26. S. M. Jeronimo and R. D. Pearson, “The Leishmania. Protozoans adapted for extracellular and intracellular survival,” in Subcell Biochem, J. L. Avila and J. R. Harris, Eds., vol. 18, pp. 1–37, Plenum Press, New York, NY, USA, 1992. View at Google Scholar
  27. I. C. Ibraim, R. R. de Assis, N. L. Pessoa et al., “Two biochemically distinct lipophosphoglycans from Leishmania braziliensis and Leishmania infantum trigger different innate immune responses in murine macrophages,” Parasites and Vectors, vol. 6, no. 1, article 54, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Rochette, F. Raymond, J. Ubeda et al., “Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species,” BMC Genomics, vol. 9, article 255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Vermeersch, R. I. da Luz, K. Toté, J. Timmermans, P. Cos, and L. Maes, “In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 9, pp. 3855–3859, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. E. S. Coimbra, L. M. R. Antinarelli, A. D. da Silva, M. L. F. Bispo, C. R. Kaiser, and M. V. N. De Souza, “7-chloro-4-quinolinyl hydrazones: a promising and potent class of antileishmanial compounds,” Chemical Biology and Drug Design, vol. 81, no. 5, pp. 658–665, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. E. C. Torres-Santos, D. Lopes, R. Rodrigues Oliveira et al., “Antileishmanial activity of isolated triterpenoids from Pourouma guianensis,” Phytomedicine, vol. 11, no. 2-3, pp. 114–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. D'Alessandro, A. Mancini, A. R. Lizzi et al., “Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer,” Nutrition and Cancer, vol. 65, no. 6, pp. 930–942, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Deghrigue, A. Dellai, N. Akremi, V. Le Morvan, J. Robert, and A. Bouraoui, “Evaluation of antiproliferative and antioxidant activities of the organic extract and its polar fractions from the Mediterranean gorgonian Eunicella singularis,” Environmental Toxicology and Pharmacology, vol. 36, no. 2, pp. 339–346, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Guajardo-Flores, S. O. Serna-Saldívar, and J. A. Gutiérrez-Uribe, “Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.),” Food Chemistry, vol. 141, no. 2, pp. 1497–1503, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. G. A. Cunha-Filho, I. S. Resck, B. C. Cavalcanti et al., “Cytotoxic profile of natural and some modified bufadienolides from toad Rhinella schneideri parotoid gland secretion,” Toxicon, vol. 56, no. 3, pp. 339–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Moon, M. Kim, Y. H. Choi, and G. Kim, “β-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways,” Cancer Letters, vol. 264, no. 2, pp. 181–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Block, C. Baccelli, B. Tinant et al., “Diterpenes from the leaves of Croton zambesicus,” Phytochemistry, vol. 65, no. 8, pp. 1165–1171, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Komiya, M. Kyohkon, S. Ohwaki et al., “Phytol induces programmed cell death in human lymphoid leukemia Molt 4B cells,” International Journal of Molecular Medicine, vol. 4, no. 4, pp. 377–380, 1999. View at Google Scholar · View at Scopus
  39. N. R. Sanches, D. A. G. Cortez, M. S. Schiavini, C. V. Nakamura, and B. P. Dias Filho, “An evaluation of antibacterial activities of Psidium guajava (L.),” Brazilian Archives of Biology and Technology, vol. 48, no. 3, pp. 429–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Liu, K. Wang, J. Zhao, M. Wang, and L. Zhou, “Secondary metabolites from Halostachys caspica and their antimicrobial and antioxidant activities,” Records of Natural Products, vol. 6, no. 1, pp. 57–61, 2012. View at Google Scholar · View at Scopus
  41. Y. Inoue, T. Hada, A. Shiraishi, K. Hirose, H. Hamashima, and S. Kobayashi, “Biphasic effects of geranylgeraniol, teprenone, and phytol on the growth of Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 5, pp. 1770–1774, 2005. View at Publisher · View at Google Scholar · View at Scopus