Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 572183, 12 pages
http://dx.doi.org/10.1155/2014/572183
Research Article

Evaluation of Human Amniotic Membrane as a Wound Dressing for Split-Thickness Skin-Graft Donor Sites

1Department of Oral and Maxillofacial Surgery, Munich University of Technology, Ismaninger Straße 22, 81675 Munich, Germany
2Clinic for Swine, Faculty of Veterinary Medicine, Ludwig-Maximilians-University of Munich, Sonnenstraße 16/A106, 85764 Oberschleissheim, Germany
3Department of Pathology, Munich University of Technology, Ismaninger Straße 22, 81675 Munich, Germany
4Department of Plastic, Reconstructive and Aesthetic Surgery, European Medical School at the Carl von Ossietzky University of Oldenburg, Evangelisches Krankenhaus, Steinweg 13–15, 26122 Oldenburg, Germany
5Red Cross Blood Transfusion Service of Upper Austria/Austrian Cluster for Tissue Regeneration, Krankenhausstrasse 7, 4017 Linz, Austria

Received 10 February 2014; Revised 24 April 2014; Accepted 12 May 2014; Published 9 June 2014

Academic Editor: Iva Dekaris

Copyright © 2014 Denys J. Loeffelbein et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Human amniotic membrane (HAM) has been used as a biomaterial in various surgical procedures and exceeds some qualities of common materials. We evaluated HAM as wound dressing for split-thickness skin-graft (STSG) donor sites in a swine model (Part A) and a clinical trial (Part B). Part A: STSG donor sites in 4 piglets were treated with HAM or a clinically used conventional polyurethane (PU) foil ( each). Biopsies were taken on days 5, 7, 10, 20, 40, and 60 and investigated immunohistochemically for alpha-smooth muscle actin (SMA: wound contraction marker), von Willebrand factor (vWF: angiogenesis), Ki-67 (cell proliferation), and laminin (basement membrane integrity). Part B: STSG donor sites in 45 adult patients (16 female/29 male) were treated with HAM covered by PU foam, solely by PU foam, or PU foil/paraffin gauze ( each). Part A revealed no difference in the rate of wound closure between groups. HAM showed improved esthetic results and inhibitory effects on cicatrization. Angioneogenesis was reduced, and basement membrane formation was accelerated in HAM group. Part B: no difference in re-epithelialization/infection rate was found. HAM caused less ichor exudation and less pruritus. HAM has no relevant advantage over conventional dressings but might be a cost-effective alternative.