Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 583035, 9 pages
http://dx.doi.org/10.1155/2014/583035
Research Article

Intra-QT Spectral Coherence as a Possible Noninvasive Marker of Sustained Ventricular Tachycardia

1Dipartimento di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico No. 155, 00185 Roma, Italy
2Division of Cardiology, S. Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Piazza Ponte dei Quattro Capi, 39 186 Roma, Italy
3Dipartimento di Medicina Clinica e Molecolare, S. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Roma, Italy

Received 18 March 2014; Accepted 28 May 2014; Published 15 July 2014

Academic Editor: Jason Ng

Copyright © 2014 Gianfranco Piccirillo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. G. Tereshchenko, I. Cygankiewicz, S. McNitt et al., “Predictive value of beat-to-beat qt variability index across the continuum of left ventricular dysfunction competing risks of noncardiac or cardiovascular death and sudden or nonsudden cardiac death,” Circulation: Arrhythmia and Electrophysiology, vol. 5, no. 4, pp. 719–727, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. R. D. Berger, E. K. Kasper, K. L. Baughman, E. Marban, H. Calkins, and G. F. Tomaselli, “Beat-to-beat QT interval variability: Novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy,” Circulation, vol. 96, no. 5, pp. 1557–1565, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Piccirillo, D. Magrì, M. Ogawa et al., “Autonomic nervous system activity measured directly and QT-interval variability in normal and pacing-induced tachycardia heart failure dogs,” Journal of the American College of Cardiology, vol. 54, no. 9, pp. 840–850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Piccirillo, D. Magrì, M. A. Pappadà et al., “Autonomic nerve activity and the short-term variability of the Tpeak-Tend interval in dogs with pacing-induced heart failure,” Heart Rhythm, vol. 9, no. 12, pp. 2044–2050, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Piccirillo, P. Rossi, M. Mitra et al., “Indexes of temporal myocardial repolarization dispersion and sudden cardiac death in heart failure: any difference?” Annals of Noninvasive Electrocardiology, vol. 18, no. 2, pp. 130–139, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Haigney, W. Zareba, J. M. Nasir et al., “Gender differences and risk of ventricular tachycardia or ventricular fibrillation,” Heart Rhythm, vol. 6, no. 2, pp. 180–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Piccirillo, F. Moscucci, M. Pascucci et al., “Influence of aging and chronic heart failure on temporal dispersion of myocardial repolarization,” Clinical Interventions in Aging, vol. 8, pp. 293–300, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Piccirillo, M. Ogawa, J. Song et al., “Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure,” Heart Rhythm, vol. 6, no. 4, pp. 546–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Magrì, G. Piccirillo, E. Bucci et al., “Increased temporal dispersion of myocardial repolarization in myotonic dystrophy Type 1: beyond the cardiac conduction system,” International Journal of Cardiology, vol. 156, no. 3, pp. 259–264, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Magr, S. Sciomer, F. Fedele et al., “Increased QT variability in young asymptomatic patients with beta-thalassemia major,” European Journal of Haematolog, vol. 79, pp. 322–329, 2007. View at Publisher · View at Google Scholar
  11. M. Malik, “Heart rate variability: standards of measurement, physiological interpretation, and clinical use,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. American College of Cardiology/American Heart Association Task Force,, European Society of Cardiology Committee for Practice Guidelines, European Heart Rhythm Association, Heart Rhythm Society, and ACC/AHA/ESC, “Guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death,” Circulation, vol. 114, no. 10, pp. 385–484, 2006. View at Google Scholar
  13. Y. Xia, Y. Liang, O. Kongstad et al., “In vivo validation of the coincidence of the peak and end of the T wave with full repolarization of the epicardium and endocardium in swine,” Heart Rhythm, vol. 2, no. 2, pp. 162–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Xia, Y. Liang, O. Kongstad, M. Holm, B. Olsson, and S. Yuan, “Tpeak-tend interval as an index of global dispersion of ventricular repolarization: evaluations using monophasic action potential mapping of the epi- and endocardium in swine,” Journal of Interventional Cardiac Electrophysiology, vol. 14, no. 2, pp. 79–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Opthof, R. Coronel, F. J. G. Wilms-Schopman et al., “Dispersion of repolarization in canine ventricle and the electrocardiographic T wave: Tp-e interval does not reflect transmural dispersion,” Heart Rhythm, vol. 4, no. 3, pp. 341–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Antzelevitch, W. Shimizu, G.-X. Yan et al., “The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart,” Journal of Cardiovascular Electrophysiology, vol. 10, no. 8, pp. 1124–1152, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Antzelevitch, “Heterogeneity and cardiac arrhythmias: an overview,” Heart Rhythm, vol. 4, no. 7, pp. 964–972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Aiba and G. F. Tomaselli, “Electrical remodeling in the failing heart,” Current Opinion in Cardiology, vol. 25, no. 1, pp. 29–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Narayan, B. D. Lindsay, and J. M. Smith, “Demonstration of the proarrhythmic preconditioning of single premature extrastimuli by use of the magnitude, phase, and distribution of repolarization alternans,” Circulation, vol. 100, no. 18, pp. 1887–1893, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Piccirillo, G. Germanò, R. Quaglione et al., “QT-interval variability and autonomic control in hypertensive subjects with left ventricular hypertrophy,” Clinical Science, vol. 102, no. 3, pp. 363–371, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Mortara, P. Sleight, G. D. Pinna et al., “Abnormal awake respiratory patterns are common in chronic heart failure and may prevent evaluation of autonomic tone by measures of heart rate variability,” Circulation, vol. 96, no. 1, pp. 246–252, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. M. El-Omar, A. Kardos, and B. Casadei, “Mechanism of respiratory sinus arrhythmia in patients with mild heart failure,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 280, no. 1, pp. H215–H231, 2001. View at Google Scholar
  23. G. Piccirillo, D. Magrì, C. Naso et al., “Factors influencing heart rate variability power spectral analysis during controlled breathing in patients with chronic heart failure or hypertension and in healthy normotensive subjects,” Clinical Science, vol. 107, no. 2, pp. 183–190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Piccirillo, M. Magnanti, S. Matera et al., “Age and QT variability index during free breathing, controlled breathing and tilt in patient with chronic heart failure and healthy control subjects,” Translational Research, vol. 148, no. 2, pp. 72–78, 2006. View at Publisher · View at Google Scholar
  25. G. Piccirillo, D. Magr, S. di Carlo, and D. Magrì, “Influence of cardiac-resynchronization therapy on heart rate and blood pressure variability: 1-year follow-up,” European Journal of Heart Failure, vol. 8, pp. 716–722, 2006. View at Google Scholar
  26. G. Piccirillo, M. Cacciafesta, M. Lionetti et al., “Influence of age, the autonomic nervous system and anxiety on QT-interval variability,” Clinical Science, vol. 101, no. 4, pp. 429–438, 2001. View at Publisher · View at Google Scholar · View at Scopus