Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 590581, 8 pages
http://dx.doi.org/10.1155/2014/590581
Research Article

Synchronization by Food Access Modifies the Daily Variations in Expression and Activity of Liver GABA Transaminase

Instituto de Neurobiología, Campus UNAM-Juriquilla, 76230 Querétaro, QRO, Mexico

Received 13 December 2013; Revised 3 March 2014; Accepted 11 March 2014; Published 7 April 2014

Academic Editor: Mario Guido

Copyright © 2014 Dalia De Ita-Pérez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Mehta, T. I. Hale, and P. Christen, “Aminotransferases: demonstration of homology and division into evolutionary subgroups,” European Journal of Biochemistry, vol. 214, no. 2, pp. 549–561, 1993. View at Google Scholar · View at Scopus
  2. N. Bouché, B. Lacombe, and H. Fromm, “GABA signaling: a conserved and ubiquitous mechanism,” Trends in Cell Biology, vol. 13, no. 12, pp. 607–610, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Garry, H. D. Coulter, and T. J. McIntee, “Immunoreactive GABA transaminase within the pancreatic islet is localized in mitochondria of the B-cell,” Journal of Histochemistry and Cytochemistry, vol. 35, no. 8, pp. 831–836, 1987. View at Google Scholar · View at Scopus
  4. P. Storici, G. Capitani, D. de Biase et al., “Crystal structure of GABA-aminotransferase, a target for antiepileptic drug therapy,” Biochemistry, vol. 38, no. 27, pp. 8628–8634, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Storici, D. De Biase, F. Bossa et al., “Structures of γ-aminobutyric acid (GABA) aminotransferase, a pyridoxal 5′-phosphate, and [2Fe-2S] cluster-containing enzyme, complexed with γ-ethynyl-GABA and with the antiepilepsy drug vigabatrin,” Journal of Biological Chemistry, vol. 279, no. 1, pp. 363–373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Kontani, S. F. Sakata, K. Matsuda, T. Ohyama, K. Sano, and N. Tamaki, “The mature size of rat 4-aminobutyrate aminotransferase is different in liver and brain,” European Journal of Biochemistry, vol. 264, no. 1, pp. 218–222, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. I. K. Franklin and C. B. Wollheim, “GABA in the endocrine pancreas: its putative role as an islet cell paracrine-signalling molecule,” Journal of General Physiology, vol. 123, no. 3, pp. 185–190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Gladkevich, J. Korf, V. P. Hakobyan, and K. V. Melkonyan, “The peripheral GABAergic system as a target in endocrine disorders,” Autonomic Neuroscience: Basic and Clinical, vol. 124, no. 1-2, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Erlitzki, Y. Gong, M. Zhang, and G. Minuk, “Identification of γ-aminobutyric acid receptor subunit types in human and rat liver,” The American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 279, no. 4, pp. G733–G739, 2000. View at Google Scholar · View at Scopus
  10. G. Y. Minuk, “Gamma-aminobutyric acid and the liver,” Digestive Diseases, vol. 11, no. 1, pp. 45–54, 1993. View at Google Scholar · View at Scopus
  11. Y. H. Li, Y. D. Liu, Y. D. Li et al., “GABA stimulates human hepatocellular carcinoma growth through overexpressed GABAA receptor theta subunit,” World Journal of Gastroenterology, vol. 18, no. 21, pp. 2704–2711, 2012. View at Google Scholar
  12. J. Y. Wu, L. G. Moss, and O. Chude, “Distribution and tissue specificity of 4-aminobutyrate-2-oxoglutarate aminotransferase,” Neurochemical Research, vol. 3, no. 2, pp. 207–219, 1978. View at Google Scholar · View at Scopus
  13. R. Dhakal, V. K. Bajpai, and K. H. Baek, “Production of gaba (gamma-Aminobutyric acid) by microorganisms: a review,” Brazilian Journal of Microbiology, vol. 43, no. 4, pp. 1230–1241, 2012. View at Google Scholar
  14. F. K. Stephan, “The “other” circadian system: food as a zeitgeber,” Journal of Biological Rhythms, vol. 17, no. 4, pp. 284–292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. B. T. S. Carneiro and J. F. Araujo, “The food-entrainable oscillator: a network of interconnected brain structures entrained by humoral signals?” Chronobiology International, vol. 26, no. 7, pp. 1273–1289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. E. Mistlberger, “Neurobiology of food anticipatory circadian rhythms,” Physiology and Behavior, vol. 104, no. 4, pp. 535–545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Báez-Ruiz, C. Escobar, R. Aguilar-Roblero, O. Vázquez-Martínez, and M. Díaz-Muñoz, “Metabolic adaptations of liver mitochondria during restricted feeding schedules,” The American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 289, no. 6, pp. G1015–G1023, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Molina-Aguilar, J. Pérez-Sánchez, O. Vázquez-Martínez, J. Rivera-Zavala, and M. Díaz-Muñoz, “Restricted food access during the daytime modifies the 24-h rhythmicity of apoptosis and cellular duplication in rat liver,” Biological Rhythm Research, vol. 43, no. 1, pp. 25–37, 2012. View at Google Scholar
  19. F. Portaluppi, Y. Touitou, and M. H. Smolensky, “Ethical and methodological standards for laboratory and medical biological rhythm research,” Chronobiology International, vol. 25, no. 6, pp. 999–1016, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Ángeles-Castellanos, J. Mendoza, M. Díaz-Muñoz, and C. Escobar, “Food entrainment modifies the c-Fos expression pattern in brain stem nuclei of rats,” The American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 288, no. 3, pp. R678–R684, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Aguilar-Delfín, F. López-Barrera, and R. Hernández-Muñoz, “Selective enhancement of lipid peroxidation in plasma membrane in two experimental models of liver regeneration: partial hepatectomy and acute CC14administration,” Hepatology, vol. 24, no. 3, pp. 657–662, 1996. View at Google Scholar
  22. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  23. M. J. Jung, B. Lippert, and B. W. Metcalf, “The effect of 4 amino hex 5 ynoic acid (γ acetylenic GABA, γ ethynyl GABA) a catalytic inhibitor of GABA transaminase, on brain GABA metabolism in vivo,” Journal of Neurochemistry, vol. 28, no. 4, pp. 717–723, 1977. View at Google Scholar · View at Scopus
  24. P. Zuther, S. Gorbey, and B. Lemmer, “Chronos-Fit v 1. 06,” 2009, http://www.ma.uni-heidelberg.de/inst/phar/lehre/chrono.html.
  25. B. E. Faulkner-Jones, D. S. Cram, J. Kun, and L. C. Harrison, “Localization and quantitation of expression of two glutamate decarboxylase genes in pancreatic β-cells and other peripheral tissues of mouse and rat,” Endocrinology, vol. 133, no. 6, pp. 2962–2972, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Lodewyks, J. Rodriguez, J. Yan et al., “GABA-B receptor activation inhibits the in vitro migration of malignant hepatocytes,” Canadian Journal of Physiology and Pharmacology, vol. 89, no. 6, pp. 393–400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Zhou, S. Holmseth, C. Guo et al., “Deletion of the gamma-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents,” Journal of Biological Chemistry, vol. 287, no. 42, pp. 35733–35746, 2012. View at Google Scholar
  28. D. M. Treiman, “GABAergic mechanisms in epilepsy,” Epilepsia, vol. 42, 3, pp. 8–12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Dibner, U. Schibler, and U. Albrecht, “The mammalian circadian timing system: organization and coordination of central and peripheral clocks,” Annual Review of Physiology, vol. 72, pp. 517–549, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Schmutz, U. Albrecht, and J. A. Ripperger, “The role of clock genes and rhythmicity in the liver,” Molecular and Cellular Endocrinology, vol. 349, no. 1, pp. 38–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. C. A. Feillet, U. Albrecht, and E. Challet, “Feeding time for the brain: a matter of clocks,” Journal of Physiology Paris, vol. 100, no. 5-6, pp. 252–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Aguilar-roblero and M. Díaz-muñoz, “Chronostatic adaptations in the liver to restricted feeding: the FEO as an emergent oscillator,” Sleep and Biological Rhythms, vol. 8, no. 1, pp. 9–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Magni, E. Dozio, M. Ruscica et al., “Feeding behavior in mammals including humans,” Annals of the New York Academy of Sciences, vol. 1163, pp. 221–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Mendoza, “Circadian clocks: setting time by food,” Journal of Neuroendocrinology, vol. 19, no. 2, pp. 127–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Díaz-Muñoz, O. Vázquez-Martínez, R. Aguilar-Roblero, and C. Escobar, “Anticipatory changes in liver metabolism and entrainment of insulin, glucagon, and corticosterone in food-restricted rats,” The American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 279, no. 6, pp. R2048–R2056, 2000. View at Google Scholar · View at Scopus
  36. R. Buijs, R. Salgado, E. Sabath, and C. Escobar, “Peripheral circadian oscillators: time and food,” Progress in MolecularBiology and Translational Sciences, vol. 119, pp. 83–103, 2013. View at Google Scholar
  37. U. Albrecht, “Timing to perfection: the biology of central and peripheral circadian clocks,” Neuron, vol. 74, no. 2, pp. 246–260, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Mrosovsky, Rheostasis: the Physiology of Change, Oxord University Press, 1990.
  39. B. Kornmann, O. Schaad, H. Bujard, J. S. Takahashi, and U. Schibler, “System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock,” PLoS Biology, vol. 5, no. 2, article e34, 2007. View at Publisher · View at Google Scholar · View at Scopus